Extended Abstract

Motivation Large language models (LLMs) have shown strong reasoning abilities in static tasks but
have yet to demonstrate similar capabilities in real-time, feedback-driven environments. Reinforce-
ment learning (RL), in contrast, enables agents to learn from interaction but lacks the flexibility and
generalization of LLMs. This project explores whether open-source multimodal LLMs, specifically
QWEN2.5, can be trained as active agents that learn from reward signals over time. We aim to
understand if LLMs can move beyond static prompting and act effectively in dense control tasks that
require spatial reasoning, rapid decision-making, and long-horizon planning.

Method We evaluate two types of agents in the Super Mario Bros environment. The first is a
vision-based DDQN agent trained on stacks of grayscale frames using a convolutional neural network.
This model uses the Double Q-learning update to reduce overestimation bias and improve stability.
The second is a fine-tuned QWEN2.5-VL model trained with Proximal Policy Optimization (PPO). It
receives a structured prompt combining an image of the current frame and a serialized JSON-based
state description. The LLM produces hidden states that are passed to lightweight MLP heads for both
policy and value prediction. We compute advantages using Generalized Advantage Estimation (GAE)
and optimize the PPO loss with entropy regularization and a value error term. The goal is to assess
whether LLMs, when trained in this setup, can learn competitive policies relative to traditional deep
RL agents.

Implementation Both agents are implemented in PyTorch. The DDQN model uses standard neural
network modules to define its convolutional and fully connected layers, along with a replay buffer and
target network for stable training. For the LLM-based PPO agent, we fine-tune QWEN2.5-VL using
the transformers and accelerate libraries, paired with peft for efficient LoRA-based updates.
Mixed-precision (bf16) training and gradient checkpointing are used to reduce memory usage. The
LLM’s policy and value heads are implemented as lightweight MLPs attached to the final hidden
states. Training and evaluation metrics are logged via Weights & Biases.

Results The DDQN agent outperformed random and greedy baselines on level 1, with performance
improving as training progressed. After 10,000 episodes, it reached an average reward of 892.3 but
still fell short of the scripted Lookahead agent. On level 2, DDQN generalized better than Greedy but
underperformed Random, suggesting overfitting or limited adaptability.

The LLM agent, without PPO fine-tuning, behaved similarly to Greedy, often failing early in the
episode. With PPO training, it improved to an average reward of 720.7—substantially better than the
unfine-tuned version (446.1), though still below DDQN. Training plots showed noisy but improving
reward trajectories, indicating partial policy learning.

Discussion Q-learning proved effective but sample-inefficient—training DDQN for 10,000 episodes
required several days and still displayed inconsistent behavior. The agent’s weaker performance on
new levels points to limited generalization and possible overfitting.

For the LLM agent, PPO fine-tuning allowed it to learn beyond greedy heuristics, though convergence
was slow. Despite not outperforming DDQN, the LLM’s post-finetuning improvements suggest it can
act as a viable policy learner, especially when enhanced with prompt engineering, LoRA adaptation,
and multimodal inputs. However, training remains resource-intensive.

Conclusion Our findings show that both DDQN and PPO-finetuned LLMs can learn useful policies
in dynamic environments. DDQN currently offers better reward performance and efficiency, but
LLMs demonstrate the potential for flexible, high-level reasoning with continued training.

Future directions include improving input representations, extending training duration, and exploring
hybrid architectures that fuse LLMs with efficient RL backbones or model-based planning. These
enhancements could yield more generalizable and sample-efficient agents.
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Abstract

Large language models (LLMs) have achieved remarkable success on static rea-
soning tasks, but their capabilities as interactive agents in dynamic, real-time
environments remain underexplored. In this work, we investigate whether open-
source multimodal LLMs can learn effective policies via reinforcement learning.
Specifically, we fine-tune a QWEN2.5-VL model using Proximal Policy Optimiza-
tion (PPO) to play Super Mario Bros, combining image and structured state inputs
into a chat-style prompt. As a baseline, we train a vision-based DDQN agent on
stacked grayscale frames. The DDQN agent outperformed random and greedy
policies, achieving an average reward of 892.3 after 10,000 training episodes. The
LLM agent, while initially weak, improved to an average reward of 720.7 after
PPO fine-tuning. Qualitatively, we observed that PPO training helped the LLM
generalize past simple heuristics, learning to dodge enemies and navigate haz-
ards. However, both agents struggled to generalize to novel levels, with signs of
overfitting and limited exploration capacity. Our findings show that LLMs can
learn grounded behavior through policy gradient training, but currently fall short of
traditional deep RL agents in sample efficiency and robustness. This suggests a
promising but still-maturing frontier for LLM-based reinforcement learning. We
share our codebase at https://github.com/iskhare/MarioLLM.


https://github.com/iskhare/MarioLLM

1 Introduction

Can large language models learn to act through real-time interaction?

Large language models (LLMs) have demonstrated impressive reasoning and generalization capabili-
ties across a range of natural language tasks—from instruction following (Zhou et al.| [2023a)) to code
generation and multi-step planning (Grattafiori et al., [2024;|OpenAl et al.,[2024; |Qwen et al.| 2025).
Yet their deployment as agents in real-time, feedback-driven environments remains underexplored.
Most LLM applications rely on static prompts, assume single-shot inference (Zhong et al., [2021]),
and lack any form of adaptation. In contrast, reinforcement learning (RL) offers a complementary
paradigm where agents learn to optimize behavior through trial-and-error, grounded in reward signals
(Sutton et al., |1998)).

We investigate whether open-source LLMs can be trained as inferactive agents in dense, high-speed
control settings. Specifically, we embed a fine-tuned QWEN2.5 model into the SuperMarioBros
environment (Kauten, 2018]), where it receives serialized observations of game state and learns to
output discrete actions through proximal policy optimization (PPO) (Schulman et al., |2017)). Unlike
prompt-based or zero-shot approaches (Kojima et al., [2022), our method fine-tunes the LLM in a
closed feedback loop, treating it as a policy network augmented with a lightweight policy-value head.
This transforms the model from a passive predictor into an active decision-maker capable of learning
from its own gameplay.

SuperMarioBros presents a non-trivial benchmark: agents must reason over spatial dynamics,
plan over long horizons, and react to unpredictable environment events—all within a fast, partially
observable domain. By evaluating LLMs in this setting, we surface practical questions around sample
efficiency and generalization.

Key Contributions of this work.

* Baselines. We implement standard benchmark agents—including random, greedy, and
depth-2 lookahead policies—to establish a lower bound for gameplay performance and
isolate the contribution of learning-based methods.

* Double Deep Q-Network (DDQN). We train a vision-based DDQN agent (Van Hasselt
et al., 2016) using a convolutional architecture on stacked grayscale frames, providing a
strong deep RL baseline for comparison and helping characterize the sample efficiency
demands of the environment.

* LLM-based RL Agent. We integrate a fine-tuned QWEN2.5 model into the control loop
via PPO, combining structured game-state inputs with a trainable policy-value head to study
whether LLMs can learn grounded, reward-optimized behavior in a real-time setting.

Together, our results provide early evidence on the viability of open-weight LLMs as trainable,
interactive agents—contributing to a growing body of work at the intersection of language modeling,
control, and reinforcement learning.

2 Related Work

LLMs as symbolic agents. Much of the early work on LLM-based agents focused on symbolic
reasoning tasks such as tool use, code execution, and web interaction. Agents like ReAct (Yao et al.,
2023)), Toolformer (Schick et al., [2023)), WebArena (Zhou et al., 2023b)), and ReSearch (Chen et al.|
2025)) use chain-of-thought prompting and in-context demonstrations to execute complex action
sequences. While effective at language-level planning, these models do not learn from feedback or
improve with experience. They operate in stateless or few-shot modes, rather than optimizing policies
over time.

LLMs in long-horizon environments. Recent efforts have applied LLMs to open-ended envi-
ronments requiring sequential decision-making. For instance, Voyager (Wang et al., 2023) uses
GPT-4 to explore and complete tasks in Minecraft, combining scripted APIs with auto-curriculum
learning. Claude has been shown to play Pokémon via structured inputs and outputs (Lee, [2025]).
However, these agents typically rely on large proprietary models, tool calling, and fixed world abstrac-
tions—sidestepping the learning challenges of exploration, sparse rewards, and online adaptation.



Reinforcement learning for control. Classic deep RL methods such as DDQN (Van Hasselt et al.}
[2016), PPO (Schulman et al., 2017), and model-based agents like Dreamer (Hatner et al., 2019a)
and PlaNet (Hafner et al.| have proven effective in structured, high-frequency control tasks.
These agents learn policies end-to-end from reward and visual input, and set the standard for sample
efficiency and stability in dynamic environments. However, they often lack the abstraction and
generalization capabilities that LLMs bring.

RL with LLMs. Bridging LLMs and reinforcement learning remains a nascent field. RLHF
approaches (Ouyang et al.| [2022)) use preference models to align LLM outputs with human intent,
but typically rely on offline data. Recent work has begun exploring online LLM adaptation through
tool interaction 2025)), reward shaping [2023)), or imitation. Yet few studies
evaluate whether LLMs can function as full-fledged RL agents capable of optimizing long-term
return in continuous feedback settings.

Positioning of this work. Our study combines these threads by evaluating whether open-source
LLMs—specifically a fine-tuned QWEN2.5 model—can act as real-time, reward-optimizing agents
in the SuperMarioBros environment 2018). We implement a PPO-based control loop
with structured inputs, benchmark against DDQN and scripted baselines, and investigate how LLMs
perform under dense, temporally extended reward signals. In doing so, we move beyond prompt-only
agents and contribute empirical insights into the feasibility of LLMs for embodied control.

3 Method

3.1 Overview

Our system investigates reinforcement learning (RL) for large language models (LLMs) in the context
of a discrete-action platformer (Super Mario Bros). We implement two separate agents:

1. A vision-based DDQN agent trained with Q-learning on stacked grayscale frames as
displayed in Figure[T]
2. A PPO-trained LLM agent that conditions on serialized game states and screenshots.

We describe the architecture, learning objectives, and reward design for each agent, along with the
action space and prompting format used for policy conditioning.

Figure 1: Example grayscale input frame down-scaled to 84 x84 pixels.

3.2 Double Deep Q-Network (DDQN) Agent

We use a standard Double Deep Q-Network (DDQN) architecture (Van Hasselt et al.} [2016)), with the
following components:

 Input: A stack of 4 preprocessed grayscale frames (84 x84). An example of a single frame
is shown in Figure[]



* CNN Backbone: Three convolutional layers: 32 filters (kernel=8, stride=4), 64 filters
(kernel=4, stride=2), and 64 filters (kernel=3, stride=1), all with ReLLU activations.

* Multilayer Perceptrons (MLPs): Two MLPs with 512 hidden units each.
* Action selection: Epsilon-greedy policy.

An visual depiction of the DDQN architecture is given in Figure
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Figure 2: Diagram of the DDQN Architecture.

3.2.1 Why DDQN over DQN.

In traditional Deep Q-Networks (DQN) (Mnih et al.,[2015)), the target for the Q-learning update is
computed using the same network both to select and evaluate the next action:

Lpon =E {(r + ’)’IY}I@XQ(S’,a’;Gf) —Q(s,a; 9))1 ’ )

where 6 are the online network parameters and 6~ are the target network parameters. This can lead
to an overestimation bias, since max,- Q(s’, a’) may overestimate the value of the next state due to
being both the selector and evaluator.

Double DQN (DDQN) addresses this by decoupling the action selection from action evaluation. The
action is selected using the online network, but its value is estimated using the target network. This
reduces over-optimistic value estimates and improves stability.

3.2.2 Temporal Difference Loss in DDQN.

In DDQN, the target is computed by first selecting the action with the highest value according to the
online network, then evaluating that action using the target network:

Target = r +7Q(s',a";07), where a* = argmax Q(s',a’; 0). )

Now, incorporating what we have from Equations [T]and 2] results in the following temporal difference
loss which is used to learn the DDQN:

Lppony = E [(T + ’}/Q(sl7 arg H}lf%x Q(s/7 a; 0);07) — Q(s,a; 9))2] . 3)

This formulation ensures that the Q-value estimate used for bootstrapping is less biased, leading to
more stable learning and better policy performance.

3.2.3 DDQN Agent Action Space and Reward

The DDQN agent operates within a constrained action space designed to simplify learning and en-
courage horizontal progression through the level. Specifically, the agent is limited to the RIGHT _ONLY
action set provided by gym-super-mario-bros, which includes:

{ NOOP, RIGHT, RIGHT+JUMP, RIGHT+RUN, RIGHT+RUN+JUMP }



This restriction reduces the complexity of the exploration space and aligns with the design goal of
emphasizing forward movement in the environment, making it more tractable for early-stage deep
reinforcement learning.

The reward function is designed to encourage forward progress, penalize death, and promote efficient
completion. Let x; denote Mario’s horizontal position at timestep ¢, and 6; = x; — x;—1 be the
change in position. The reward r, at time ¢ is defined as:

“

where A > 0 is a small time penalty (e.g., A = 0.01) applied at each timestep to discourage idling
and encourage faster level traversal.

_— 0 if Mario dies at ¢
e 0 — A otherwise

3.3 Proximal Policy Optimization (PPO) LLM Agent

We use an open-source multimodal LLM (QWEN2.5-VL) fine-tuned with Proximal Policy Optimiza-
tion (PPO). The agent conditions on both:

* Screenshot: Rendered game frame, passed as an image input.

* Serialized State: Textual JSON-based game state including Mario’s position, score, world,
and enemies.

These are combined into a prompt, formatted using a chat template as given in Section[3.3.1]

The model generates hidden states which are fed into a policy and value head:
mo(als) = Categorical (MLP(hr)) and Vy(s) = MLP(hr) %)
where hr is the final hidden state.

3.3.1 LLM Agent Input Prompt

SYSTEM_PROMPT = """
You are an AI agent playing Super Mario Bros.
Analyze the game state and choose the best action.

Available actions:

0: NOOP - Do nothing

1: RIGHT - Move right

2: RIGHT+JUMP - Move right and jump

3: RIGHT+RUN - Move right and run

4: RIGHT+RUN+JUMP - Move right, run and jump (best for long jumps)
5: JUMP - Jump in place

6: LEFT - Move left (avoid unless necessary)

Strategy:

- Always progress right to complete the level
- Jump over enemies and gaps

- Use running for speed and longer jumps

- Collect coins when safe

- Avoid getting stuck

- Complete the level as fast as possible
nnn

3.3.2 Reward and Action Space

The LLM agent operates over a discrete action space consisting of 7 high-level commands: {NOOP,
RIGHT, RIGHT+JUMP, RIGHT+RUN, RIGHT+RUN+JUMP, JUMP, LEFT}. These were selected to provide
a compact yet expressive control interface suitable for language model reasoning.



The reward function used is identical to the DDQN reward from Equation[d] This reward structure
simplifies training dynamics for PPO while still providing a dense signal for policy improvement.

3.3.3 PPO Loss Formulation

We optimize the clipped surrogate PPO objective:
Yy (at | S t)
Tona (at]5¢)

with advantage estimates computed via Generalized Advantage Estimation (GAE) (Schulman et al.}
2015):

Lppo = E; {min (rt(e)flt, clip(r¢(0),1 —¢, 1+ e)flt)] , where ,(0) = 6)

At = 6t =+ (’Y}\)(St+1 + -
O =1e + 7V (se41) — V(s¢)-

The total loss includes three terms:
Lioas = Lppo + €1+ Lyae — C2 - H[mg], @)

where Ly, is the MSE loss between V (s) and empirical return, and # is the entropy bonus.

3.3.4 Parameter-Efficient Fine-Tuning with LoRA

To make fine-tuning tractable for large multimodal LL.Ms, we adopt Low-Rank Adaptation (LoRA)
(Hu et al.l [2022) as a parameter-efficient tuning strategy. Instead of updating all model weights,
LoRA introduces small trainable rank-decomposition matrices into attention and feedforward layers,
significantly reducing the number of updated parameters.

We apply LoRA to the QWEN2.5-VL model using rank » = 16, dropout rate of 0.05, and oo = 32,
targeting key transformer modules such as query/key/value projections and feedforward blocks. The
rest of the model weights remain frozen.

This setup enables gradient updates on a lightweight set of injected parameters, improving train-
ing speed and reducing GPU memory usage. Combined with mixed-precision (b£16) training,
quantization, and gradient checkpointing, this allows stable PPO fine-tuning within a single-GPU
setup.

The LoRA-adapted LLM outputs final hidden states hr, which are then passed into separate MLP
heads for policy and value prediction (see Equation [3)).

4 Experimental Setup

4.1 Task and Environment

We evaluate agents in the SuperMarioBros-1-1-vO environment from the
gym-super-mario-bros suite (Kauten, 2018). The agent’s objective is to complete the
level as efficiently as possible while avoiding obstacles and enemies. The environment emits pixel
observations and game metadata at 60 FPS, which we downsample and preprocess (see Section [3).

4.2 Baselines and Metrics

To compare agents, we track the total reward which is the sum of timestep-level rewards per episode.
All experiments are averaged over multiple episodes (typically 10-20) for evaluation.

We implement three non-learning baselines for comparison:
* Random: Uniformly samples an action at each timestep.

* Greedy: Repeatedly selects the action that maximizes the reward at the next time step.

* Depth-2 Lookahead: Enumerates all two-step action sequences and chooses the one that
maximizes immediate reward using a lightweight heuristic model.

These provide simple behavioral references and help isolate the gains from learned policies.



4.3 DDQN Agent

The DDQN agent observes stacks of 4 grayscale 84 x 84 frames and selects from a constrained
RIGHT_ONLY action set: {NOOP, RIGHT, RIGHT+JUMP, RIGHT+RUN, RIGHT+RUN+JUMP}. The net-
work is trained with the Double Q-learning objective using a target network and replay buffer. The
DDQN agent is trained using the settings described in Table

Hyperparameter Value

Learning rate 2.5 x 1074
Discount factor (v) 0.9

Replay buffer size 100,000 transitions
Batch size 256

Target network sync interval 2,500 steps
Training episodes (Attempted) 25,000 steps

Training episodes (Actual)
Exploration schedule (e-greedy)

10,000 steps
Decay from 1.0 to 0.1

Table 1: Key hyperparameters used for training the DDQN agent.

44 LLM PPO Agent

The LLM agent is trained using Proximal Policy Optimization (PPO) on serialized game-state JSON
and base64-encoded screenshots, both of which are passed to a fine-tuned QWEN2.5-VL model via a
structured system prompt (Section 3.3.1)). The model outputs logits for 7 discrete actions: {NOOP,
RIGHT, RIGHT+JUMP, RIGHT+RUN, RIGHT+RUN+JUMP, JUMP, LEFT}.

Training uses simple linear layers for both the policy and value head, trained on top of the final
hidden state of the underlying LLM. We optimize for the standard PPO loss (see Section [3). The key
hyperparameters for this agent are given in Table[2] Fine-tuning is performed with LoRA adapters
using bf 16 precision along with 4-bit quantization using bitsandbytes for more efficient GPU
utilization, and logged via Weights & Biases.

Hyperparameter Value
Learning rate 1x10°°
Discount factor (v) 0.99
Clip range 0.2

GAE parameter (\) 0.95
Mini-batch size 16

PPO epochs 4

Value loss coefficient 0.1
Entropy coefficient 0.01

Table 2: Key hyperparameters used for training the PPO-based LLM agent.

5 Results

5.1 Quantitative Evaluation

We began by evaluating the training of the DDQN agent across 10,000 episodes. Figure 3] shows how
the agent received mostly random rewards, especially at the beginning of training, displaying how the
agent was in its exploration phase. As e decreased and the agent began to use exploitation more often,
the average reward began to increase slightly as in Figure d] However, the curve shows the reward
was still mostly random showing that more training would be beneficial.

To evaluate the performance of our agents, we measured the average reward obtained by the agents in
level 1 across 1,000 episodes. We also tested our DDQN agent after 2,500 training episodes and after
10,000 training episodes.
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Figure 3: Reward over first 1,000 episodes of training.
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Figure 4: Reward over final 1,500 episodes of training.

From these results, we can see that that the DDQN agent was able to learn specific behavior that
enabled it to perform better than random. Additionally, further training improved upon the average
return for the DDQN agent indicating that further strengthening the indication that additional training
would be beneficial.

Model Average Reward
Random 616.8
Greedy 236.0
Lookahead (depth = 2) 1046.0
LLM (no RL fine-tuning) 446.1
DDQN (2,500) 827.9
DDQN (10,000) 892.3
LLM w/ PPO 720.7

Table 3: Average reward across 1,000 evaluation episodes for each model on level 1.

The LLM agent with no RL fine-tuning performed only slightly better than a Greedy agent, indicating
that this approach only provided actions that maximized the additional next step reward even if this
was not beneficial long-term. With PPO training, the model substantially improved but didn’t reach
the same level as the pure RL agents, presumably because of undertraining (due to time and resource
constraints) or other causes discussed in the next section. As seen in the training plots (Figures
|§] and |§|), the reward curve is mostly noise, although the loss does seem to decrease (in an albeit
unstable manner). The frequency of high reward (>1000) episodes also increased throughout training,
suggesting that the model was indeed learning useful strategies, but was unable to fully break free of
its failure modes.
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Figure 6: Reward curve for LLM PPO training.

Overall, the Lookahead agent with depth two was the highest performing agent demonstrating that
taking into account future rewards was the most beneficial approach, further showing that as our
DDQN agent improved it would likely lead to increased performance.

We additionally tested the baseline and DDQN models on level 2 to analyze the generalizability of
our model from learning on level 1 to executing on level 2.

Model Average Reward
Random 877.1
Greedy 105.0
Lookahead (depth = 2) 874.0
DDQN (2,500) 439.1
DDQN (10,000) 375.1

Table 4: Average reward across 1,000 evaluation episodes for each model on level 2.

Level 2 presents Mario with increased difficulty in the form of more enemies and harder to traverse
obstacles. These results indicate that the DDQN agent was able to generalize some of its training
from level 1 due to its superior performance to the Greedy baseline. However, the performance was
still worse than the Lookahead or Random agents indicating that the training done on level 1 was
not sufficient to create a performant agent on other levels. Surprisingly, we found that the DDQN
agent that was trained for more episodes actually performed worse than the one trained on fewer
episodes. This did not make sense to us as the increased training should allow the agent to more



expertly navigate the enemies and obstacles, even in a new environment. We hypothesized that the
10,000 episode agent may have overfit to the level 1 environment, but when observing the agent
play through the level actually found a much more intuitive qualitative explanation to this behavior
described below.

5.2 Qualitative Analysis

As our qualitative analysis, we observed our agents playing various levels in the Super Mario Bros
environment. Specifically, we visually compared agents in the first two levels of the game consisting
of obstacles (pipes that Mario needs to jump over, enemies (Goombas), and holes where Mario can
fall and die.

Beginning with the first level, for the Greedy and LLM with no RL agents, we observed behavior
consistent with the agent repeatedly choosing the "RIGHT" action. This means that Mario would
move without jumping until it hit the first Goomba and then die (Figure[7). This behavior was
expected from the Greedy agent as always moving right would maximize short-term reward (moving
to the right quickly) while being unable to understand the benefit of not immediately dying. However,
we were surprised to observe that the LLM with no RL agent wasn’t able to understand the game-
state context enough to jump over the first Goomba. This validated our hypothesis that we needed
to include an RL in the loop approach to reinforce behavior that maximized improved long-term
outcomes.
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Figure 7: Greedy Mario Behavior.

The lookahead agent with depth 2 was the agent that most consistently was able to dodge the first
round of enemies and advance through the level. However, it hit a block in progression when it was
forced to time a jump to avoid enemies. Specifically, the agent consistently died when it came across
a situation with moving enemies where it had to jump over a pipe and land between enemies (Figure
[B). This shows how the lookahead agent lacked the ability to understand that its next move may put it
in a poor position to succeed if that move lasted longer than one additional turn (as is the case with a
long jump).

Figure 8: Mario jumping over pipe into two Goombas.



The random agent performed qualitatively as expected with Mario sometimes dying immediately, and
other times progressing deep into the level and avoiding many enemies. This behavior was replicated
early in the DDQN agent’s training with the DDQN agent exhibiting random behavior during its early
exploration phase. As training went on, the DDQN agent began to more consistently avoid the first
Goomba in the level and progressed deeper into the level. Specifically, after 2,500 training episodes
Mario often runs into a single enemy when jumping over a pipe (Figure9). After 10,000 training
episodes, Mario is able to consistently pass this enemy before dying at the next junction. This shows
how many training episodes lead to incremental improvement and understanding of the environment,
and underscore the need for further training.

Figure 9: Mario jumping over pipe into Goomba.

With the LLM agent, we initially expected it to easily outperform pure RL baselines due to sheer size,
scaling laws, zero-shot generalization, etc. However, without fine-tuning, the LLM was susceptible
to dying (e.g. by greedily holding right) or falling into traps (e.g. running into a pipe over and over)
early in the episode. With PPO training, performance improved slightly, and the model started to
venture farther into the level more consistently (as seen in Figure[). Despite these glimmers of hope,
the LLM agent was still too prone to early traps to dethrone DDQN and Lookahead based on average
reward. We hypothesize that either the fully general nature of pretrained + instruct-tuned LLMs isn’t
wholly compatible with this specific, out-of-distribution task of playing Mario, or the model couldn’t
learn to process the input in a way that fully realized the model’s potential.

Progressing to the second level, we wanted to analyze if training solely on the first-level was
generalizable. We were only able to analyze the DDQN agent in this scenario due to compute
limitations with the LLM agent.
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Figure 10: Mario stuck behind tower of blocks.

The DDQN agent is able to generalize many of the things it learned during training in the first level to
the second level. It successfully dodges some of the enemies and is able to avoid initial obstacles. The
main difference in the behavior observed in level two is that there are two places where the DDQN
agent gets stuck. The first is a spot directly in front of a tall tower of blocks (Figure[I0) where only a
perfectly timed use of the RIGHT + JUMP action would be able to save the agent, a behavior that it
would not have encountered in the first level at all. The second place where the agent gets stuck is a

10



box where moving right no longer works (Figure [IT). This demonstrates (1) the limitation of our
limited action space where Mario cannot move left and undo a failed move right, but also (2) a lack of
context awareness that getting stuck is possible as this scenario was not encountered in the first level.
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Figure 11: Mario stuck where it cannot proceed with RIGHT action.

Interestingly, we found that quantitatively the DDQN agent trained with 10,000 episodes performed
worse than the one trained with only 2,500 episodes. However, when observing the gameplay of
these agents we found that the agent trained on more episodes actually progressed deeper into the
level more often, but got stuck in the scenario presented in Figure[TT|often. This led to many negative
rewards for the agent (as the agent would run out of time on that episode leading to negative reward
accumulation) and explains the worse performance observed quantitatively.

The baseline algorithms perform similarly to the first level as expected. The Random agent often
becomes stuck in the same places that the DDQN agent becomes stuck in leading to lower rewards.
Additionally, however, as there are more enemies in the second level the Random agent often dies
early in the run as well. The Greedy agent once again only moves to the right, and dies early in
the level. The Lookahead with depth two agent is still able to perform quite well, managing to
escape easily when it gets stuck in the scenario in Figure [I0] It is able to progress past many of the
enemies and even avoids getting stuck in the scenario in Figure[TT] This was somewhat surprising as
moving upwards should’ve enabled a similar outcome as moving right (within a depth of two moves).
However, the agent still died shortly after this when encountering scenarios where there are many
enemies and timing was required.

6 Discussion

Our results show how Q-learning is not only possible, but effective in this context. However, they have
several limitations. We were not able to train the DDQN agent for sufficient episodes to enable true
learned behavior. After 10,000 episodes of training our agent still displayed mostly random behavior,
which is consistent with the fact that our e parameter had not decayed sufficiently to significantly
encourage exploitative behavior. We wished to train this agent for at least 50,000 episodes but were
heavily compute limited as even training for 10,000 episodes required 5 days of computing. This
indicates that there is a significant limitation with sampling efficiency that needs to be refined in order
for long-term training.

Multimodal LLMs are a promising direction for game-playing agents, able to leverage vast amounts
of general reasoning and language- and image-based data. Ultimately, however, these models aren’t
trained to maximize rewards in very specific game environments, which puts them at a disadvantage
compared to pure RL methods. We explored PPO fine-tuning as a way to bridge these gaps, but were
only able to partially do so, perhaps due to resource constraints or more fundamental limits with our
setup. In this PPO setting, the 3B parameter size is both a blessing and a curse: it allows for very
general understanding of the task and goal, with mostly coherent generations, but is extremely costly
to run in terms of both memory and wall time (relative to other baselines). Nevertheless, the model’s
ability to string together high-reward actions over long time scales in certain episodes suggests that
this approach still has promise.
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7 Conclusion

Overall, our work shows that RL can be implemented in different ways — traditional methods such
as DQNs, or newer methods such as with LLMs — to successfully train agents to play Mario, with
varying degrees of success depending on the approach.

Quantitatively, the DDQN agent consistently outperformed random and greedy baselines on level 1,
achieving an average reward of 892.3 after 10,000 training episodes. While it did not surpass the
scripted lookahead agent, it demonstrated the ability to learn effective behaviors over time. The LLM
agent, when trained with PPO, improved significantly over its non-finetuned counterpart (720.7 vs.
446.1 average reward), showing that policy gradient fine-tuning can extract useful decision-making
behavior. However, it still underperformed compared to DDQN, likely due to limited training and
the LLM’s general-purpose nature. Notably, generalization to level 2 remained a challenge for all
agents, with DDQN exhibiting unexpected degradation in performance — likely due to overfitting or
limitations in action diversity.

This means that large language models, while not yet outperforming deep RL agents in sample effi-
ciency or reliability, can learn grounded policies and execute multi-step reasoning through structured
training. Their ability to improve with PPO signals that RL with LLMs is a viable and evolving
paradigm.

In the future, we wish to explore deeper PPO fine-tuning for LLMs, alternative input encodings (such
as temporal attention across frames), and hybrid systems that combine LLM priors with efficient RL
modules. We are also interested in incorporating model-based planning or curriculum learning to
enhance generalization and sample efficiency across diverse game environments.

8 Team Contributions

* Ishan Khare: Implemented the initial DDQN agent and conducted early deep RL exper-
iments. Contributed to training diagnostics, refinement of reward structure, and overall
coordination of the research direction. Assisted in writing and revising all sections of the
report.

* Gabe Seir: Set up the core codebase and Super Mario Bros environment. Ran baseline
experiments (random, greedy, lookahead) and extended the DDQN training. Developed
evaluation scripts and reproducibility infrastructure. Led model evaluation and results
analysis and assisted in writing and revising all sections of the report.

* Anthony Zhan: Led the implementation of the LLM-based agent, passing in pre-processed
game-state info and using PPO fine-tuning. Developed the prompting logic and integrated
LoRA-based training with quantization into the QWEN2.5-VL model. Assisted in writing
and revising results, discussion, and conclusion.

Changes from Proposal Compared to the initial project proposal, our implementation shifted away
from model-based planning (MCP loop) and expert trajectory generation toward direct reinforcement
learning with PPO. We did not implement behavioral cloning or REINFORCE as originally planned.
Instead, we focused on training the LLM agent via PPO with online experience collection and
feedback. Additionally, our DDQN implementation took on a larger scope than initially expected,
serving as a key benchmark. All team members contributed to analysis, discussion, and collaborative
writing throughout the final report.
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