

GyML: Smart Fitness Trainer Using 3D Human Feedback Models

Ishan Khare*, Anthony Qin*, and Aditya Tadimeti*

*{iskhare, antqin27, tadimeti}@stanford.edu

CS 229 | Stanford University

Stanford **Computer Science**

Introduction

- Proper exercise form is crucial to maximize fitness benefits and minimize risk of injury
- We use state-of-the-art vision models to provide immediate feedback on a user's exercise form
- **Input:** video of user performing exercise
- Output: exercise classification and feedback

Dataset and Features

- Used the **FLAG3D Dataset**²: 7,204 labeled examples of 60 different fitness activities
- For each video, the pose data has dimensions (num. frames \times 72)
- Data was flattened and padded with 0s to ensure the same dimensions before training
- Ran principal components analysis (PCA)³ with K = 0.75 to speed up training and improve model generalizability
- We also captured some of our own raw 4K video data on an iPhone 15 Pro Max

Example user input video

Methods

• **Cross-entropy loss** for a single instance:

$$C \qquad L(y, \hat{y}) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{C} y_{ij} \log(\hat{y}_{ij}), \text{ such that } \hat{y}_{ij} = \frac{e^{z_{ij}}}{\sum_{k=1}^{C} e^{z_{ik}}}, \text{ where: }$$

N = number of instances, C = number of classes,

 $y_{ij} = \text{binary indicator of instance } i \in \text{class } j,$

 \hat{y}_{ij} = predicted probability of instance $i \in \text{class } j$,

 $z_{ij} = \text{instance } i$'s raw score (logit) for class j.

- One-vs-Rest (OvR) Logistic Regression (LR): 60 specialized models, each distinguishes a particular exercise from the remaining 59
- Multinomial LR: single model that assigns a probability distribution to each exercise
- Statistical Coach: identifies video components along with feedback
 - employed L2-norm to develop repetition counting tool
 - Compare with 'gold standard' video for feedback

Experiments and Results

• Human Mesh Recovery (HMR2.0)⁴ results for pose estimation

Classification Model Results

Given true/false positives (TP/FP), and true/false negatives (TN/FN):

$$accuracy = \frac{TP + TN}{TP + FN + TN + FP}, \ precision = \frac{TP}{TP + FP}, \ recall = \frac{TP}{TP + FN}$$

Approach	Training time	Accuracy	Precision	Recall	Num. Features
OvR LR	25 hours	99%	99%	99%	222,408
MLR	26 hours	99%	99%	99%	222,408
OvR LR+PCA	5 mins	81%	83%	81%	59
MLR+PCA	5 mins	96%	96%	96%	59

(7,204 examples split into 70/20/10 ratio for train-dev-test)

Statistical Coach Results

(b) Start Frame

(c) First Peak

(d) First Valley

L2 Norm of Difference Vector Between Start Pose and Each Frame

(a) L^2 Norm for Start Pose - All Other Poses

- Valleys correspond to frames with similar norms to the start frame; e.g., subplot (b) compared to (d)
- Avg. L2-norm between 'bad' valley and 'gold' start is 4.427; Max diff in 2 'gold' frames is 2.5
- Statistical coach isolates each corresponding rep and location where the diff norm exceeds the max 'gold' norm diff.

Conclusions and Future Work

- Human Mesh Recovery models worked just as expected very well!
- For classification: models w/o PCA were heavy and likely don't generalize well; MLR+PCA is lightweight with good performance
- Statistical coach performed well on pushup case study due to the repetition in the videos – should work well for rep-based exercises
- In future, we want to improve robustness by curating our own data
- Will use a classifier for rep quality rather than basic norm analysis
- Coach system will support natural language feedback on exercises

References

- 1) Poster template from https://github.com/njwfish/stanford-poster-template
- 2) Y. Tang, J. Liu, A. Liu, B. Yang, W. Dai, Y. Rao, J. Lu, J. Zhou, and X. Li. Flag3d: A 3d fitness activity dataset with language instruction. In CVPR, 2023.
- 3) K. Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901.
- 4) S. Goel, G. Pavlakos, J. Rajasegaran, A. Kanazawa, and J. Malik. Humans in 4D: Reconstructing and tracking humans with transformers. In ICCV, 2023.