Improving LLM Personalization Via Monte Carlo
Methods

Ishan Khare Anthony Zhan Sabri Eyuboglu
Stanford University Stanford University Stanford University
iskhare@stanford.edu azhan9@stanford.edu eyuboglu@stanford.edu
Abstract

Users of large language models (LLMs) have diverse preferences and needs, re-
quiring personalized responses tailored to their individual contexts. While existing
approaches like prompting and fine-tuning have limitations - prompting strug-
gles with complex personalization signals and fine-tuning requires maintaining
separate model parameters per user - we propose PERSONACO, a novel Monte
Carlo sampling approach. Our method generates multiple responses conditioned
on personalization signals and uses self-reflection to select the response that best
satisfies the user’s preferences. Through empirical evaluation, we demonstrate
that PERSONACO outperforms standard prompting baselines while avoiding the
computational overhead of maintaining user-specific model parameters.

1 Introduction

Users of large language models (LLMs) [[18] exhibit diverse preferences and needs. For example,
responses to medical queries like "What causes COVID?" should differ between epidemiologists
and laypeople, varying in technical depth and terminology. In this work, we study the challenge of
personalizing LLMs to effectively serve each user’s unique preferences. Specifically, we focus on the
task of generating a tailored, high-quality response given a query for the model as well as a set of
personalization signals (e.g. an example of the user’s writing style or the phrase "I have a PhD in
epidemiology") (Figure[T).

In practice, this personalization task is difficult because of the large number of different (a) users
(e.g. 200M weekly active users on ChatGPT) and (b) personalization signals. There are two
main approaches for personalization commonly used in practice: prompting and fine-tuning. With
prompting, user-specific instructions derived from personalization signals are prepended to the
prompt [12} (3,16 [15]. This approach is easy and efficient to implement because only a single copy of
the model needs to be maintained for all users [[11]. However, models may struggle to balance all
the personalization signals via in-context learning alone [[13}19]. In contrast, fine-tuning provides a
more flexible approach to personalization that could be more effective at integrating personalization
signals [22} [17, [16l 20]. However, this requires maintaining separate model parameters for each
user, which may be prohibitively expensive for large user bases (even with parameter-efficient
fine-tuning [[17]).

In this work, we explore whether we can improve adherence to personalization signals over simple
prompting while avoiding the need for maintaining separate model parameters for each user. We
propose a new method, PERSONACO, that leverages Monte Carlo sampling to generate multiple
responses conditioned on the personalization signals and then, through self-reflection, selects the
response that best satisfies the personalization signals. This approach enables improved adherence to
personalization signals while avoiding the need for maintaining separate model parameters for each
user.

CS 329H Final Paper (Fall 2024).

Query
) "What might cause an obstruction
hy{/ of the tail exhaust pipe in vehicle \

exhibiting... \\ - Response
“An obstruction of the exhaust pipe in
; LLM ChatBot }j a vehicle can occur due to various
/ £ reasons. Some possibilities include...”

User /
@' “I have ten years experience...” /
£) “l prefer answers without bullets.”
=Y\

“I see primarily Toyotas and Kia's...”

Figure 1: The Language Model Personalization Task. An example interaction with a large language
model chatbot. The user provides both their query about car exhaust pipe obstruction as well as
personalization signals indicating their experience level and preferences for response style. The
chatbot can then tailor its response appropriately based on these personalization cues.

We find that PERSONACO outperforms the standard prompting baseline in terms of win rate (289
queries for PERSONACO vs. 212 for prompting baseline). We also perform an exploratory analysis
and identify subgroups of personalization signals where PERSONACO performs particularly well. Our
results highlight the potential of Monte Carlo methods applied to LLM personalization.

2 Preliminaries

2.1 Problem Formulation

We study the problem of personalizing an LLM’s response to a user query given a set of person-
alization signals. Formally, given a query x € & and a set of personalization signals s C S, the
objective is to generate a response y €) that satisfies both the prompt and personalization signals.
We evaluate generators g : X x S —) using a preference model p : J) x Y — [0, 1] that compares
pairs of responses based on how well they satisfy the personalization signals. A higher preference
score indicates better adherence to the personalization criteria.

2.2 Related Work

Recent approaches to personalization in Large Language Models (LLMs) have primarily focused on
two main strategies: prompting and fine-tuning.

Prompting

Prompting involves providing personalization criteria directly to LLMs as part of the input [23]. This
method leverages the adaptability of LLMs by guiding their responses through carefully constructed
input prompts. However, it has notable limitations. For one, prompting is not always effective when
the personalization criteria are complex or nuanced, which can lead to inconsistent or inaccurate
model responses. This is particularly problematic in scenarios where highly specific outputs are
required [7]. Additionally, prompting primarily relies on textual inputs, rendering it inflexible for
multimodal personalization tasks or situations requiring non-textual input modalities. An even more
significant drawback arises in contexts where reward models are employed, as prompting alone is
insufficient to effectively integrate such models into the personalization pipeline.

Fine-tuning

Fine-tuning explicitly trains LLMs to align with personalized preferences [15,[16]. This approach has
demonstrated strong performance in adapting models to specific user needs by tailoring their weights
to reflect individual or group preferences. However, it comes with significant challenges. Fine-tuning
demands access to extensive datasets that encapsulate the target preferences for each persona, which
may not always be available or feasible to collect. Moreover, the process is computationally intensive,
often requiring substantial resources to optimize and deploy [[10]. In practical applications, such as
chatbots or real-time assistants, the need to store separate fine-tuned weights for each user poses
scalability challenges, both in terms of storage and maintenance. This limits the applicability of
fine-tuning in environments requiring dynamic, large-scale personalization solutions.

Sampling
With the impracticality of web-scale pretraining in academic settings and the exhaustion of non-

synthetic data sources, recent research efforts have shifted to focus on scaling test-time compute
[2,[14]. Under this paradigm, LLMs generate a final completion through a series of intermediate
generation processes, which can involve Monte Carlo, chain-of-thought, planning, etc. [[19]. An
appeal of such approaches is that it allows for dynamic compute allocation, i.e. spending more
compute on harder or more complex queries; by contrast, under a naive generation approach, both
simple and complex queries receive a single left-to-right pass [21]].

In one particular study, Brown et al. demonstrate that sampling /N times from the same query leads to
a predictable increase in “coverage," i.e. best-of-N performance. Crucially, they note that in certain
settings (i.e. code), repeated sampling from a simpler model can match or exceed performance from
a more complex model while being up to 3x cheaper [2].

It is thus natural to ask whether the same test-time scaling approach using repeated sampling can be
adapted to the task of personalization.

3 PERSONACO: A simple monte carlo method for personalization

In this section, we describe PERSONACO, a simple monte carlo method for LLM personalization.
PERSONACO works by repeatedly sampling from the model and then prompting the model to reflect
on which sample best satisfies the personalization signals.

()
Inputs

* Auser queryx € X
* A set of personalization signals s € S
Generator (g: X xS —)

1. Construct a prompt. Construct a prompt z by prepending the user query = with
the concatenation of the set of personalization signals s.

2. Sample. Draw k independent samples from the model conditioned on the prompt
yi ~ Py(t|2)

3. Reflect. For each sample y; and personalization signal s;, prompt the model to
reflect on whether the sample satisfies the personalization signal. This produces a
k x |s| binary matrix.

4. Choose. Choose the sample y; that maximizes the sum of the responses from the
reflect step.

Outputs The generator returns the sample y; that maximizes the adherence to the personal-
ization signals.
\. J

Important hyperparameters of the method include the number of samples % and the exact prompt and
template/format used to construct the prompt z. In our experiments, we use £ = 32 and a temperature
of 1.0.

We used the following prompt templates:

Personalization Prompt:

When answering the following query, please consider the following personalizations: {per-
sonalizations } Question: {query}. Reflection Prompt: Does your answer address the
personalization {personalization}? Answer with only a number O (for no) or 1 (for yes)

For the simple prompting baseline, we use the personalization prompt above but without the reflection
step.

PCA Visualization of Personalization Embeddings

LLM Judge (GPT-d0) Response Distribution Personalization Length Distribution St
evaluation

Personaco (Llama-18)

(Llama-18)

M Judge (GPT-d0) Chaice
Number of Queries

Second Principal Component
b bdbdocoooe o e

120 -02 -01 00 01 2 03 04 05
First Principal Component

Figure 2: PERSONACO outperforms prompting baseline. (Left) The distribution of LLM as a judge
decisions for the prompting baseline vs PERSONACO. The height of the bar represents the number of
query-personalization signal pairs that received a preference decision. (Middle) The distribution of
personalization signal lengths stratified by LLM as a judge decision. (Right) PCA visualization of
TF-IDF embeddings of the personalization signals colored by LLM as a judge decision.

4 Results

In this section, we present the results of our experiments comparing generations from PERSONACO,
our monte carlo sampling method, and a prompting baseline. Our experiments aim to answer the
following questions.

* Overall Win Rate: Does PERSONACO produce generations that are better aligned with the
personalization signals?

* Win Rate vs. Personalization Complexity: As we increase the complexity/length of the
personalization signals per prompt, does the win rate of PERSONACO increase?

* Error Analysis: Via error analysis, can we identify any types of personalization signals
where PERSONACO performs particularly well?

4.1 Experimental Setup

Dataset To simulate chatbot-user interaction, we use the UltraFeedback dataset [4]], which consists
of 60k queries across a variety of topics (e.g. math, code, general QA). Due to compute and time
constraints, instead of working with the entire dataset, we randomly sample a subset of 128 queries.

Personalization Signals For each query, we ask GPT-4o to generate 15 different personalization
strings of the form “I prefer when the response uses detailed anecdotes." The prompt that we use for
the personalization signals is:

()
Personalization Prompt: Generate a list of k personalizations for the query below. Output in
JSON format and do not include any other text. For example, for the query "Describe the char-
acteristics of Baroque music and its impact on Western music history. , the personalizations
might be:

* "Do not use any bullet lists in the response."

* "I can understand complicated language at the level of a PhD in music history."

"I prefer when the response uses detailed anecdotes. Do not speak in generalities."
» "I prefer answers as concise as possible."

¢ "Do include citations."
_ J

Evaluation The evaluation is setting is a simple binary preference feedback setting — the user
(which can be a human or, in our case, an LLM judge) is given two possible completions A and B,
and told to select which completion better satisfies the prompt according to the given personalization
criteria.

There are four possible responses: A, B, “same" (if both satisfy the prompt/criteria to an equal
degree), or “n/a" if the personalization criteria doesn’t apply to the prompt (e.g. if the personalization
signal if “I prefer poems that rhyme.”, but the query is a simple math problem).

()
Evaluation Prompt: Below is a query and two responses. You will be asked to evaluate the
degree to which each response satisfies a personalization criterion.

Respond only with one of the following (do not include the quotes and do not include any
other text):

* A’ if response A satisfies the criterion better than response B

* ’B’ if response B satisfies the criterion better than response A

* ’N/A’ if the criterion is not applicable to either response

* 'SAME’ if both responses satisfy the criterion to the same degree

Query: {query}

Response 1: {response A}

Response 2: {response B}

_ J

Models For generating responses, we use Meta’s Llama 3.2 1B as our “generator” model used for
both the prompting baseline and PERSONACO [[18]. For evaluating responses (LLM as a judge), we
use OpenAl’s GPT-4o [1].

4.2 Results

Using the experimental setup decribed above, we answer the following questions:

Overall Win Rate: Does PERSONACO produce generations that are better aligned with the person-
alization signals? Out of 768 query-personalization pairs, we find that GPT-40 evaluator chooses
PERSONACO 289 times, the prompting basline 212 times, and tie or not applicable 267 times (see
Figure 2] Left). This represents a significant improvement in adherence to the personalization signals.

Win Rate vs. Personalization Complexity: As we increase the complexity/length of the person-
alization signals per prompt, does the win rate of PERSONACO increase? We do not find a strong
relationship between the win rate and the complexity of the personalization signals, as measured by
the length of the personalization signal (see Figure 2| Center).

Error Analysis: Via error analysis, can we identify any types of personalization signals where
PERSONACO performs particularly well? We perform a simple clustering analysis where we embed
each query-personalization pair using TF-IDF and then cluster with k-means. We find that PER-
SONACO performs particularly well for personalization signals related to the query topic (see Figure[2]
Right). The gap between PERSONACO and prompting baseline is the largest for query-personalization
pairs with specific grammatical or stylistic preferences (50% win rate for PERSONACO vs. 31.25%
for prompting baseline). Also, we found that PERSONACO performs particularly well for query-
personalization pairs related to family and leisure (35.42% win rate for PERSONACO vs. 31.25%
for prompting baseline). We found no large gap between PERSONACO and prompting baseline for
query-personalization pairs in the cluster related to coding (32.05% win rate for PERSONACO vs.
31.25% for prompting baseline). Furthermore, in Figure 2] Right, we provide a PCA visualization of
the TF-IDF embeddings for each query-personalization pair colored by the LLM evaluator’s choice.

5 Conclusion

We demonstrate that Monte Carlo sampling is an effective way to approach the personalization
problem over a simple, prompt-based baseline without requiring additional training and maintenance
of seprate models for different users.

5.1 Future Work

While vanilla Monte Carlo offers an efficient, straightforward way to generate repeated samples,
more sophisticated methods can guide samples towards areas of high success. One such method is

sequential Monte Carlo, which evaluates partial generations and gives more weight to those which
seem more promising [8§]].

In addition, our work addresses immediate preferences which are explicitly provided via prompt.
Future work may choose to focus on extracting and learning long-term preferences over multiple
interactions with the user, which could be especially attractive for chatbot applications.

6 Ethics and Society Review

We recognize that advancing personalization in large language models (LLMs) through Monte
Carlo methods introduces significant ethical challenges that must be addressed to ensure responsible
deployment. Below, we expand on key ethical concerns and their implications for society.

6.1 Privacy and Data Security

Personalization inherently relies on collecting and processing user data, which raises critical privacy
concerns. While our method does not explicitly require storing user data long-term, the personalization
process may involve sensitive information from user inputs. Ensuring robust data security measures
is essential to prevent unauthorized access or misuse. Moreover, the transient storage of data during
computation must comply with strict privacy regulations such as GDPR or CCPA.

6.2 Bias and Echo Chambers

6.2.1 Bias Amplification

The risk of bias amplification is a persistent issue in LLMs, and personalization can exacerbate this
problem. By tailoring outputs to individual preferences, there is a danger of reinforcing pre-existing
biases present in training data or user inputs. For instance, if a user’s preferences reflect biased
perspectives, the model may perpetuate these biases without critical oversight. To mitigate this, future
work could incorporate fairness-aware algorithms that actively detect and counteract biased outputs
during the personalization process.

6.2.2 Creation of Echo Chambers

Personalized LLMs have the potential to create echo chambers by consistently aligning responses
with a user’s preferences and beliefs. While this improves user satisfaction in the short term, it
may reduce exposure to diverse perspectives and hinder critical thinking over time. This concern is
particularly acute in applications like news delivery or educational tools, where balanced viewpoints
are essential. To address this, we could incorporate mechanisms that introduce controlled diversity
into personalized outputs while still respecting user preferences.

6.3 Environmental Impact

The computational demands of Monte Carlo sampling are significantly higher than simpler prompting
methods. This raises concerns about the environmental impact of scaling such approaches across
millions of users. The energy consumption associated with running extra inference with models at
scale could contribute to carbon emissions unless mitigated through efficient algorithms or renewable
energy sources. Exploring sequential Monte Carlo methods or other optimizations could help reduce
the computational footprint without compromising personalization quality.

6.4 Accountability and Transparency

As LLMs become more personalized, ensuring accountability for their outputs becomes increasingly
complex. Users may attribute harmful or misleading content to the model itself rather than under-
standing the role their preferences played in shaping the response. To address this, our system should
provide transparency regarding how personalization criteria influence outputs. Clear disclaimers or
interactive explanations could help users understand the trade-offs involved in personalized responses.

6.5 Ethical Use Cases

Finally, it is critical to consider the broader societal implications of deploying personalized LLMs
across various domains. For example, while personalization can enhance user experience in cus-
tomer service or education, it may be misused in manipulative advertising or political campaigning.
Establishing ethical guidelines for permissible use cases will be essential to prevent harm and misuse.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, [lge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774,2023.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V. Le, Christopher R,
and Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated
sampling. arXiv preprint arXiv:2407.21787, 2024.

Konstantina Christakopoulou, Alberto Lalama, Cj Adams, Iris Qu, Yifat Amir, Samer Chucri,
Pierce Vollucci, Fabio Soldo, Dina Bseiso, Sarah Scodel, et al. Large language models for user
interest journeys. arXiv preprint arXiv:2305.15498, 2023.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan
Liu, and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback,
2023.

Yuhao Dan, Jie Zhou, Qin Chen, Junfeng Tian, and Liang He. P-tailor: Customizing per-
sonality traits for language models via mixture of specialized lora experts. arXiv preprint
arXiv:2406.12548, 2024.

Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Maheswaran Sathiamoorthy, Lichan Hong,
Ed Chi, and Derek Zhiyuan Cheng. Do llms understand user preferences? evaluating llms on
user rating prediction. arXiv preprint arXiv:2305.06474, 2023.

Jaehyung Kim and Yiming Yang. Few-shot personalization of llms with mis-aligned responses.
arXiv preprint arXiv:2406.18678, 2024.

Alexander K Lew, Tan Zhi-Xuan, Gabriel Grand, and Vikash K Mansinghka. Sequential
monte carlo steering of large language models using probabilistic programs. arXiv preprint
arXiv:2306.03081, 2023.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. Transactions of
the Association for Computational Linguistics, 12:157-173, 2024.

Venkatesh Balavadhani Parthasarathy, Ahtsham Zafar, Aafaq Khan, and Arsalan Shahid. The
ultimate guide to fine-tuning llms from basics to breakthroughs: An exhaustive review of
technologies, research, best practices, applied research challenges and opportunities. arXiv
preprint arXiv:2408.13296, 2024.

Chris Richardson, Yao Zhang, Kellen Gillespie, Sudipta Kar, Arshdeep Singh, Zeynab Raeesy,
Omar Zia Khan, and Abhinav Sethy. Integrating summarization and retrieval for enhanced
personalization via large language models. arXiv preprint arXiv:2310.20081, 2023.

Scott Sanner, Krisztian Balog, Filip Radlinski, Ben Wedin, and Lucas Dixon. Large language
models are competitive near cold-start recommenders for language-and item-based preferences.
In Proceedings of the 17th ACM conference on recommender systems, pages 890-896, 2023.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael
Schirli, and Denny Zhou. Large language models can be easily distracted by irrelevant context.
In International Conference on Machine Learning, pages 31210-31227. PMLR, 2023.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-
mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

Chenkai Sun, Ke Yang, Revanth Gangi Reddy, Yi R Fung, Hou Pong Chan, Kevin Small,
ChengXiang Zhai, and Heng Ji. Persona-db: Efficient large language model personalization for
response prediction with collaborative data refinement. arXiv preprint arXiv:2402.11060, 2024.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Zhaoxuan Tan, Zheyuan Liu, and Meng Jiang. Personalized pieces: Efficient personalized
large language models through collaborative efforts. In Yaser Al-Onaizan, Mohit Bansal, and
Yun-Nung Chen, editors, Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pages 6459-6475, Miami, Florida, USA, November 2024. Association
for Computational Linguistics.

Zhaoxuan Tan, Qingkai Zeng, Yijun Tian, Zheyuan Liu, Bing Yin, and Meng Jiang. Democra-
tizing large language models via personalized parameter-efficient fine-tuning. arXiv preprint
arXiv:2402.04401, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Evan Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, Will Song, Vaskar Nath, Ziwen
Han, Sean Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves llm
search for code generation. arXiv preprint arXiv:2409.03733, 2024.

Fan Yang, Zheng Chen, Ziyan Jiang, Eunah Cho, Xiaojiang Huang, and Yanbin Lu. Palr:
Personalization aware llms for recommendation. arXiv preprint arXiv:2305.07622, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Bin Yin, Junjie Xie, Yu Qin, Zixiang Ding, Zhichao Feng, Xiang Li, and Wei Lin. Heterogeneous
knowledge fusion: A novel approach for personalized recommendation via llm. In Proceedings
of the 17th ACM Conference on Recommender Systems, pages 599-601, 2023.

Zhehao Zhang, Ryan A Rossi, Branislav Kveton, Yijia Shao, Diyi Yang, Hamed Zamani, Franck
Dernoncourt, Joe Barrow, Tong Yu, Sungchul Kim, et al. Personalization of large language
models: A survey. arXiv preprint arXiv:2411.00027, 2024.

	Introduction
	Preliminaries
	Problem Formulation
	Related Work

	Personaco: A simple monte carlo method for personalization
	Results
	Experimental Setup
	Results

	Conclusion
	Future Work

	Ethics and Society Review
	 Privacy and Data Security
	Bias and Echo Chambers
	Bias Amplification
	Creation of Echo Chambers

	Environmental Impact
	Accountability and Transparency
	Ethical Use Cases

