Minimal Clues, Maximal Understanding: Solving Linguistic Puzzles with RNNs, Transformers, and LLMs
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Methods

Problem and Introduction Analysis

e Critical gap exists in ability of deep-learning models Baselines: Implemented Random Words and FastAlign methods e RNN and GPT-4 perform best on Norwegian plausibly due to close

e Recurrent Neural Network (RNN)’: Sequence-to-sequence proximity to English (both Germanic languages with Latin alphabet)
e \We uncover limits by SOIVing Rosetta Stone IingUiStiC network with LSTM encoder and decoder plUS attention ® Performance varies with |anguage ie., Georgian’s Subject_object_verb

puzzles with minimal bidirectional translations e Transformer-Based MOdEIS*: Pre-trained NMT models with grammar vs. Subject_verb_object for Enghsh
self-attention (6 layers each with 8 attention heads)

e LLM In-Context Learning: Provided solved puzzles and prompted
GPT-4 for translation without language-specific knowledge

* fine-tuned on either TEDTalk external corpus or small set of solved linguistic puzzles

Experiments and Results

to mimic human-like reasoning and understanding

e Experiments: i) RNNs, ii) fine-tuned transformer o Shows importance of model adaptability to infer linguistic patterns

based models, and iii) GPT-4 in-context learning

{o»”»

® Most Georgian model attention heads focus on “” punctuation mark

e Swahili model attention shows strong links between correct
translation pairs such as “mfaime” —"king” and “mbaya” —"bad”

® Our methods surpass baselines (with GPT-4 being
the best) but lack human-like reasoning
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