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Abstract

Frontier cloud large language models (LLMs) like GPT-40 excel at complex
reasoning but incur high inference costs and pose privacy risks when processing
long inputs. Meanwhile, lightweight open-weight LLMs such as QWEN2.5 and
LLAMA3 can run locally but lack the capacity for high-fidelity decision-making.
This paper studies a hybrid edge—cloud setup where a local encoder compresses
a long document context X into a shorter summary Z, which is then sent to
a remote decoder to predict the final answer Y. We cast this X — Z — Y
protocol as a noisy information channel and introduce a mutual information (MI)
estimator for quantifying how much task-relevant information is preserved. Using
this estimator, we empirically analyze two QA benchmarks—LONGHEALTH and
FINANCEBENCH—and observe that higher MI correlates with higher answer
accuracy. We also report bit efficiency and empirical rate—distortion curves to
compare local model families. Our results show that QWEN models produce more
efficient summaries than LLAMA models, especially at smaller scales. Together,
these findings offer a principled foundation for designing efficient and private
edge—cloud LLM systems.

1 Introduction

Why split a question between two language models?

Frontier cloud models such as GPT-40 [23] or CLAUDE 4 [3] reliably perform code-base refactoring,
multi-document legal analysis, and long-horizon clinical reasoning. Yet even a single pass over a
one-million token repository costs $15 on the OpenAl o1 endpoint. Meanwhile, compact (1-8B
parameters) open-weight LLMs are now performant enough to run on local devices via projects such
as LLAMA.CPP [18] and Ollama [21]. These lightweight model families like QWEN2.5 [24] and
LLAMA3 [9] excel at many basic tasks like text manipulation but still fall short on the data-intensive

reasoning demanded by modern workflows.

We therefore study a hybrid, local-remote architecture in which an on-device local LLM transforms
the raw context x into a compressed message z that is sent over the network to a powerful remote
LLM, which then returns the final answer y. This pipeline is attractive for three intertwined reasons:

1.

Cost. Once the hardware ships, local FLOPs are free whereas cloud inference is foken-metered.
Shrinking a 10 k-token context to a 300-token summary can reduce end-to-end cost by more than
an order of magnitude.

Privacy and regulation. Sensitive inputs like electronic health records (HIPAA) [[11], merger
term sheets (SEC Rule 10b-5) [25]], or chat transcripts (GDPR) [8]] may be prohibited from leaving
the device in raw form.
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3. Latency, bandwidth, and energy. Transmitting the entire raw context to the cloud can overwhelm
uplink bandwidth and drain battery, especially on mobile devices; a local preprocessor reduces
both latency and energy by minimizing data transfer.

Yet overly aggressive compression risks discarding the very bits required for high-fidelity answers.
This tension raises a fundamental question:

How much information must the local model preserve for a specified task to ensure
the remote model can still perform accurate reasoning?

We cast the protocol x — z —y as a noisy information channel and analyze its efficiency through
the lens of mutual information (MI) and rate—distortion theory. Under this view, the edge LLM is a
learned source coder, and the cloud LLM is a stochastic decoder whose distortion is measured by
downstream task error.

Key Contributions of this work.

* Information—theoretic framework for edge—cloud LLMs. We cast the local — remote summary
channel as a rate—distortion problem providing a novel empirical analysis.

* Practical mutual-information estimator. We propose an in-context sampling estimator that needs
O(n*m) remote log-probability calls—where 7 is the number of contexts/documents and m is the
number of candidate summaries per context—and demonstrate that higher estimated MI predicts
higher answer accuracy on the LONGHEALTH [1]] and FINANCEBENCH [13]] datasets.

* Empirical distortion curves. By evaluating a spectrum of local LLM model families and sizes
under a fixed summarization prompt, we obtain multiple operating points in the (rate, distortion)
plane—where mutual information Z(X; Z) serves as a proxy for communication rate.

Together, these results supply principled guidelines for deciding how much an edge model should say
to minimize cost without compromising correctness.

2 Preliminaries

2.1 Problem Setup and Notation

We study a two—stage LLM communication protocol illustrated in Figure[I] Let X € X" denote the
document context, Z € Z the compressed summary, and Y € ) the final answer.

Here, X is the space of all possible document contexts—e.g., concatenations of user queries and
source materials such as webpages, financial filings, or legal contracts. Each instance z € X may
contain tens of thousands of tokens. The encoder transforms « into a shorter summary z € Z
designed to capture task-relevant information.

The output space ) represents the set of all task outputs. For multiple-choice QA tasks, ) is a discrete
set of answer options (e.g., {A, B, C, D, E}); for financial reasoning benchmarks like FinanceBench,
Y may instead be a structured output space—e.g., numeric tuples like revenue and net income values
extracted from 10-K filings. In both cases, the remote decoder consumes z and stochastically produces
a prediction § € ) approximating the true label y.

The local encoder is modeled as a conditional distribution p(Z | X)) parameterized by a lightweight
on—device LLM. It transforms a potentially long context X into a shorter discrete string Z (e.g., a
task—specific summary). The remote decoder is another LLM realizing p(Y | Z) that consumes
the summary and stochastically generates the final answer. We treat X — 2 — Y as a Markov chain

governed by the joint p(x, z,y) = p(x) p(z | ) p(y | 2).

2.2 Mutual Information and Rate-Distortion Perspective

The mutual information between the context and summary is

T(X; Z) = Diw(p(@,2)|[p(@) p(2)) = Epie,sy [log 255 . )
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Figure 1: The Simplified Local-Remote Collaboration Setting. We consider a two-stage language model
(LM) protocol where an on-device local encoder compresses the document context X into a question-specific

summary Z via p(z | «), which is then sent to a remote decoder that produces the final answer Y via p(y | 2).
This setup enables efficient and private inference by offloading only essential information to the remote model.

High 7 implies that Z preserves many bits about X; low Z indicates aggressive compression.

For a supervised task with loss £(y, ), we quantify distortion as the expected task error D =

E[¢(Y,Y (Z))], where Y denotes the stochastic prediction of the cloud LLM. Rate—distortion theory
studies the Pareto frontier D (R) achievable for compression budgets R measured in bits or, here, in
units of mutual information.

2.3 Related Work

Edge—cloud LLM inference. A growing systems literature studies how to split a large language-
model’s computation between an on-device “edge” component and a cloud back-end to slash latency,
cost, or privacy risk. Recent advances include EDGELLM’s speculative-decoding engine for 7-13B
paramater models on smartphones [28], model-based RL for adaptive layer splitting over wireless
links [6], token-level routing that selectively consults a remote LLM only on “hard” tokens [26]],
resource-aware offloading frameworks for edge servers [[10], and a recent survey distilling the design
space of pruning, quantization, and split-inference techniques [27].

Summarize-then-answer pipelines. Prior to the advent of very large context windows (100k+
tokens), QA systems often adopted a “summarize, then reason” strategy. In multi-hop reading
comprehension, the SUMMARIZE-THEN-ANSWER framework demonstrated that an abstractive
explainer can raise end accuracy while shrinking context [12]]. Follow-up work introduced candidate-
conditioned summarization (SURE) for open-domain QA [14] and reward-model-guided context
filtering that deletes irrelevant tokens before prompting a reader [[15]]. These studies, however, treat
the compression length as a heuristic and do not quantify how much retained information suffices for
correctness.

Information-theoretic analyses of summarization. Drawing on past theory, a recent work formal-
izes a summarizer rate—distortion function and empirically links higher mutual information Z(X; Z)
to better human preference scores [4]. Parallel work argues that mutual information offers a task-
agnostic evaluation signal for summarization quality [[7], and sliced-MI bounds have been proposed
for classification from compressed views [20]. Unlike these text-only studies, we model the two-step
channel X — Z —Y and measure distortion as downstream task error.

Neural mutual information estimation. Estimating the mutual information in high dimension is
notoriously challenging. The Mutual Information Neural Estimator (MINE) [5]] and the InfoNCE
bound [2] of Contrastive Predictive Coding [22] supply tractable lower bounds widely used in
representation learning. Additionally, a NEURIPS-24 benchmark shows their bias—variance trade-
offs on real text corpora [17]. We, however, use a different estimator for an in-context regime that
needs only black-box log-probability access to the remote LLM.

Positioning of this work. Our study unifies the above threads: from edge—cloud split inference
we inherit the system motivation, from summarize-then-answer pipelines we inherit the two-stage
X — Z —Y design, and from information-theoretic summarization we inherit MI-based evaluation.



Bridging the three, we present the first empirical rate—distortion curves for LLM Question-Answering
datasets.

3 Mutual Information Estimator
3.1 Theoretical Derivation

As introduced earlier, we consider a two—stage language model (LM) communication protocol

X p(z|z) 7 p(y|z) %

)

where a context X is first compressed by an encoder p(z | x) into a summary Z, and then decoded
by p(y | 2) to produce labels Y. By the Data Processing Inequality (DPI) [19]], I(X; Z) > I(Y; Z),
so Z cannot introduce information about X beyond what X already contains.

Mutual information (MI). We deﬁn the MI between X and Z as the Kullback—Leibler (KL)
divergence [16] between the joint distribution p(x, z) and the product of marginals p(z)p(z):

I(X; Z) = Dxu(p(=, 2) || p(z)p(2))
=E, ,z~p(x,z) |:10g ;DI(??L:;?)} 2

Rewriting the intractable term. Directly computing the marginal from the denominator p(z) =
E.[p(z | )] is intractable. Because we can both sample 2z ~ p(z) and evaluate the encoder p(z | z),
we rewrite Equation (2) as

I(X7 Z) = Eaz,zrvp(LZ) |:10g %} . 3)

Monte-Carlo estimator. Let {xz;}"_; be IID samples from p(z) and {z”};” 1~ p(z | z;) be ID
encoder draws for each x;. A simple Monte Carlo (MC) estimator of Equation (3) is

n m

f(X;Z) ~ % ZZ[logp(zij | ;) 1og(%ip (2 | 2 )} 4)
=1
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3.2 Practical Estimation Pipeline

1. Sample candidate summaries. For each of the n document—query pairs, a local open-weight
LLM produces m sampled summaries. The resulting n x m draft messages are cached for
downstream analysis.

2. Measure cross-likelihoods. A powerful remote LLM is then asked to score the ground-truth
answer under every mismatched context—-summary pair, yielding the full grid of n?m log-
probabilities {log po(2k; | ) }i ke[n],je[m]- Batched requests keep the entire sweep within the
memory envelope of a single A100 GPU.

3. Estimate mutual information. Finally, the cached log-probabilities are plugged directly into the
Monte-Carlo approximation from Equation (@) to calculate the final answer.

4 Experiments and Results

We evaluate our proposed mutual information (MI) estimator and the edge—cloud LLM collaboration
protocol on two distinct benchmarks: LONGHEALTH, a medical QA dataset with long document
contexts, and FINANCEBENCH, a structured financial reasoning task based on SEC filings. Across
both, we explore the interplay between local model compression and remote model accuracy.

'All logarithms are natural.



4.1 Setup

For each dataset, we fix a downstream task (QA or extraction), a set of n» document—query pairs,
and m summaries per context produced by a local LLM. Each summary is sent to a cloud-based
supervisor model, which predicts the final answer. We evaluate the accuracy of this answer and
compute MI using the pipeline described in Section[3.2]

We vary the local encoder by choosing from several open-weight models (e.g., QWEN 1.5B/3B/7B,
LLaMA 1B/3B/8B), while testing against several remote supervisors including GPT-40 and
LLAMA3.1 405B Instruct.

4.2 Mutual Information and Token Counts

Tables[I]and 2] report MI estimates and average token counts across model families.

Table 1: LONGHEALTH: Mutual Information (MI)  Table 2: FINANCEBENCH: Mutual Information (MI)

and Average Token Count and Average Token Count
Model MI(Z(X;Z)) Avg. Token Count  Model MI(Z(X;Z)) Avg. Token Count
QWEN 1.5B 2.40 247.3 QWEN 1.5B 2.70 456.84
QWEN 3B 2.76 190.3 QWEN 3B 3.00 278.72
QWEN 7B 2.99 97.8 QWEN 7B 3.00 226.60
LLAMA 1B -4.18 555.3 LLAMA 1B 2.37 427.84
LLAaMA 3B -0.69 461.1 LLAMA 3B 2.78 449.50
LLAMA 8B 1.10 464.2 LLAMA 8B 2.82 493.20

Larger models such as QWEN 7B and LLAMA 8B typically achieve higher MI—indicating more task-
relevant information is preserved during summarization. For instance, QWEN 7B yields MI ~ 3.00
on FINANCEBENCH, while LLaMA 1B trails at ~ 2.37.

These mutual information scaling curves versus model size are also displayed in Figures[2]and [3]
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Figure 2: Mutual Information vs. Model Size on = Figure 3: Mutual Information vs. Model Size on
LONGHEALTH dataset. FINANCEBENCH dataset.

Moreover, we observe that the larger models generally tend to have a smaller average token count
except for the exception of the LLAMA family on the FINANCEBENCH dataset.

These results are also displayed in Figures @] and 3]
4.3 Bit Efficiency
To understand not just the absolute performance but the efficiency of local models, we evaluate bit

efficiency, defined as the mutual information Z(X; Z) normalized by the number of remote tokens
consumed to produce the final answer.
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Figure 6: Bit efficiency on LONGHEALTH dataset. Figure 7: Bit efficiency on FINANCEBENCH dataset.

Figures [6] and [7] show the bit efficiency curves for both LONGHEALTH and FINANCEBENCH. In
both datasets, the QWEN family consistently achieves higher MI per remote token compared to the
LLAMA family, especially at smaller model sizes.

For instance, on LONGHEALTH, QWEN 1.5B already surpasses LLAMA 8B in bit efficiency, and
QWEN 7B delivers more than 3x the efficiency of LLAMA 8B. Similarly, on FINANCEBENCH,
QWEN 7B reaches a bit efficiency of over 0.013, compared to LLAMA 8B’s peak of just under 0.006.
These results reinforce the earlier conclusion: QWEN models not only retain more task-relevant
information but do so with far fewer remote resources. In other words, the QWEN models are better
at generating succinct and compressed summaries as compared to the LLAMA ones.

4.4 Accuracies by Local Model Family

We analyze the performance of each local model family—QWEN and LLAMA—in terms of the final
answer accuracy achieved by the remote supervisor.

Qwen. Across both datasets, QWEN models exhibit strong performance and favorable scaling trends
as presented in Table[3] On LONGHEALTH, QWEN 1.5B achieves accuracies in the 43-53% range
depending on the supervisor, while QWEN 3B improves to 61-66%, and QWEN 7B reaches as high
as 68% with GPT-40. Similar behavior is observed on FINANCEBENCH, where QWEN 1.5B peaks
at 50% accuracy with GPT-4o0, while QWEN 3B and 7B both consistently reach 60% across several
supervisors.

Llama. LLAMA models generally underperform Qwen models of comparable size. The LLAMA
results are displayed in Table[d] On LONGHEALTH, LLAMA 1B struggles, with accuracies in the
21-33% range. LLAMA 3B improves to 54—60%, and LLAMA 8B reaches 63-70%, indicating
better retention of task-relevant content as size increases. On FINANCEBENCH, LLAMA 1B remains



Table 3: Accuracy comparison of QWEN2.5 worker models on LONGHEALTH and FINANCEBENCH

Worker Model Supervisor Model LONGHEALTH Accuracy FINANCEBENCH Accuracy
QWEN 1.5B GPT-40 0.53 0.50
LLAMA3.1 405B Instruct 0.49 0.40
LLAMA3.3 70B Instruct 0.46 0.36
LLAMA3.1 8B Instruct 0.43 0.32
LLAMA4 Maverick Instruct 0.51 0.44
QWEN 3B GPT-40 0.66 0.60
LLAMA3.1 405B Instruct 0.63 0.60
LLAMA3.3 70B Instruct 0.63 0.60
LLAMA3.1 8B Instruct 0.61 0.52
LLAMA4 Maverick Instruct 0.65 0.60
QWEN 7B GPT-40 0.68 0.60
LLAMA3.1 405B Instruct 0.65 0.56
LLAMA3.3 70B Instruct 0.65 0.56
LLAMA3.1 8B Instruct 0.63 0.56
LLAMA4 Maverick Instruct 0.66 0.52

Table 4: Accuracy comparison of LLAMA3 worker models on LONGHEALTH and FINANCEBENCH

Worker Model Supervisor Model LONGHEALTH Accuracy FINANCEBENCH Accuracy
LrLAMA 1B GPT-40 0.33 0.30
LLAMA3.1 405B Instruct 0.28 0.25
LLAMA3.3 70B Instruct 0.21 0.25
LLAMA3.1 8B Instruct 0.23 0.20
LLAMA4 Maverick Instruct 0.28 0.275
LLAaMA 3B GPT-40 0.60 0.575
LLAMA3.1 405B Instruct 0.58 0.50
LLAMA3.3 70B Instruct 0.54 0.50
LLAMA3.1 8B Instruct 0.54 0.575
LLAMA4 Maverick Instruct 0.60 0.625
LLAMA 8B GPT-40 0.70 0.70
LLAMA3.1 405B Instruct 0.68 0.70
LLAMA3.3 70B Instruct 0.65 0.675
LLAMA3.1 8B Instruct 0.63 0.625
LLAMA4 Maverick Instruct 0.65 0.75

under 30%, while LLAMA 3B achieves moderate accuracy (50—63%) and LLAMA 8B attains strong
performance (up to 75%) when paired with LLAMA4 Maverick.

Takeaway. These results confirm that larger local models yield more accurate remote predictions,
consistent with their higher mutual information. While both families benefit from scaling, QWEN
models are more efficient at retaining relevant content at smaller sizes, making them more suitable
for edge deployment under tighter computational constraints.

4.5 Distortion Curves

To visualize the tradeoff between compression and task performance, we plot empirical rate—
distortion curves where distortion is defined as 1 — accuracy and rate is measured via mutual
information Z(X; Z). These curves reflect how much information the local model must retain to
enable the remote model to perform accurate reasoning.

Distortion curves for LONGHEALTH are given in Figures [§] and O] whereas the ones for FI-
NANCEBENCH are presented in Figures [T0]and [T T}

Across both datasets, we observe that LLAMA-based local models produce cleaner, more convex
rate—distortion curves. In contrast, QWEN-based workers show irregular distortion patterns.
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Figure 9: Rate-distortion curves on LONGHEALTH with LLAMA workers.

Across both datasets, we observe that LLAMA-based local models yield smoother and more con-
vex rate—distortion curves, especially in the mid-to-large model sizes. This suggests that LLAMA
summaries degrade gracefully under compression. In contrast, QWEN-based workers often exhibit
irregular or jagged curves, indicating sensitivity to architectural or optimization differences across
scales. Nevertheless, QWEN models still outperform LLAMA in terms of absolute distortion at a
given MI level, underscoring their overall efficiency despite the noisier scaling behavior.

4.6 Summary

Our experimental analysis reveals several key insights about the behavior of local-remote LLM
systems under information-theoretic constraints:

* Mutual information tracks performance. Higher mutual information Z(X; Z) is con-
sistently predictive of better downstream accuracy. Larger local models preserve more
task-relevant content, as reflected in both MI estimates and accuracy metrics.

¢ Qwen models are more efficient. Across both LONGHEALTH and FINANCEBENCH,
QWEN models consistently achieve higher accuracy and bit efficiency than their LLAMA
counterparts. They are especially performant at smaller model sizes, making them attractive
for edge deployment.
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Figure 11: Rate-distortion curves on FINANCEBENCH with LLAMA workers.

* Bit efficiency distinguishes model quality. By normalizing MI by the number of remote
tokens used, we expose a clearer measure of summarization efficiency. QWEN 7B achieves
over 3x the bit efficiency of LLAMA 8B, suggesting that it produces more compact yet
informative summaries.

» Rate-distortion curves characterize tradeoffs. While LLAMA models exhibit cleaner
and more convex distortion curves—indicative of stable performance degradation—QWEN
models offer better absolute accuracy—compression tradeoffs, even if their scaling behavior
is noisier.

* Practical guidance for system designers. These findings supply principled tools—mutual

information estimation, bit efficiency, and distortion curves—for choosing local LLMs that
balance cost, compression, and answer fidelity in edge—cloud architectures.

5 Conclusion and Future Work

This work proposes an information-theoretic framework for studying edge—cloud collaboration in lan-
guage models, where a local encoder compresses a long input into a summary that a powerful remote
model uses to generate a final answer. We introduce a practical estimator for mutual information
Z(X; Z) that requires only black-box access to remote log-likelihoods, and shows empirically that



higher MI correlates with lower task distortion. Through extensive experiments on LONGHEALTH
and FINANCEBENCH, we demonstrated that MI, bit efficiency, and distortion curves serve as effective
tools for evaluating and selecting local models.

Limitations. Our current MI estimator requires O(n?m) remote log-probability calls for n docu-
ment contexts and m summaries per context. While this is tractable for small-scale evaluations, it
becomes costly at scale.

Next Steps. To reduce runtime and generalize across datasets, we propose training a small neural
network to approximate mutual information directly. Specifically:

* Estimator: Learn a contrastive objective (e.g., InfoNCE [22]) that distinguishes true
document—summary pairs from mismatched ones.

* Efficiency: This learned estimator offers a fast lower-bound proxy for MI, avoiding the
need for expensive n?m evaluations.

» Evaluation: We will also plot perplexity vs. accuracy curves for each local-remote model
pair to better understand the tradeoffs between confidence and correctness.

Overall, our framework supplies a principled foundation for designing summarization-aware systems
that balance compression and fidelity. We believe future work combining neural MI estimation
with large-scale deployment will further bridge the gap between efficient inference and high-quality
reasoning in edge—cloud LLM architectures.
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