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Problem statement:

How does utilizing low-rank convolutions affect a CNN’s 
performance in computational time, memory, and accuracy?
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Background



Deep learning compute requirements are growing faster than 
hardware growth creating bottlenecks in computational efficiency.

Motivation



● Slide a size K x K trained kernel  across our 

input image

● Process of repeatedly sliding is highly 

time-inefficient

● We show optimizations: instead of using a 

full K x K convolution, for large K, we use a 

low rank representation.

Convolutions



● Low-Rank approximation (LoRA) for 
rank-reduction of matrix M.

● LoRA (used by OpenAI + others for LLMs)
○ 1) train full model,
○ 2) approximate, and
○ 3) fine-tune.

● We propose an alternative to LoRA, where we:
○ 1) enforce rank-n matrices during training
○ 2) inference with efficient weights

Existing Approaches
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Hypothesis:

Constraining convolution training to a rank-N 
space, leads to: well-trained, well-performant 
models with parameter and time efficiency.
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Methodology &

Experiments



● Run a classification task on the 
CIFAR-10 Dataset -> Split into Train, 
Test and experiment.

For each experiment we do the following:
1. Batch learning (64)
2. Train for 10k iterations
3. Test on the entire test set
4. Log important information
5. Repeat 50 different seeds each time

CIFAR -10 Dataset

Experimental Setup



In total we ran experiments with the 
following architectures:

1. Baseline (default architecture)
2. Using dropout (in between each 

convolutional block)
3. Using Batch Norm (in between each 

convolutional layer)
4. Using Both dropout and batch norm

For each experiment, we conducted 
experiments using kernel sizes of 3,5,7. 

For each kernel size, we tested all rank-N 
training spaces up till the size
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● We create our own custom Low-Rank 
Convolutional Layer which forces its 
weights onto a Rank-N space.

● We manually deal with proper 
initialization, maintenance, and Toeplitz 
Multiplication of the Rank-N space 
throughout training, but utilize PyTorch’s 
auto-gradients.

● We then build on this by developing our 
own Convolutional Block so that each 
layer is a Rank-N enforced Low-Rank 
Convolutional Layer

Low Rank Convolutional Layer

Toeplitz Matrix - allows for efficient, 
parallelizable matrix multiplications
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Results & Analysis



Timing Results

Increasing kernel size, 
increases training time. 

However, baseline 
convolutions (x = 1.0) 
outperform Rank-1.

Kernel Size has minimal  to no 
impact on testing time. 

Toeplitz method is promising.

Some Ranks reach better 
performance more quickly 
than the baseline (Rank 7)



● Were able to effectively cut the space of CNN 
weights down from O(N^2) to O(N)

● However, time often varied due to other model 
components

● Time for testing was rather random in which 
performed better due to convolutions not 
being the bottleneck factor.

● Due to linear layers and activations, the 
convolution wasn’t necessarily the bottleneck.

● General positive correlation between rank and 
time for training

● Our training implementation is comparable to 
PyTorch and thus promising for future work.

● Our rank-1 training (naively implemented) 
rivaled that of PyTorch’s optimized CNN

● Component of interest: sometimes smaller 
ranks achieve better performance more 
quickly; analyzed further later

Time and Space



Train and Test Accuracy vs Rank/KS

● Increasing Kernel Size generally increases accuracy. 
● Rank-1 is only 2% off PyTorch default convolutions: a promising tradeoff. 
● Generalizability is slightly better: the difference between train and test 

performance is better when using Low-Rank Convolutions
● Rank–6 outperforms PyTorch default convolution at Kernel Size 7



Loss vs Kernel Size

● As kernel size increases, lower rank matrices obtain performance quicker in 
comparison to PyTorch default Convolution. E.g. in Kernel Size 7, Rank 6 trains 
more efficiently than baseline.



Findings:
● Performance gaps even to Rank-1 are fairly small (only 2% in large kernels).
● Small ranks can have advantages during training, especially when dealing with larger 

kernels and thus larger models.
● The smaller rank with a larger kernel size seems to be effective due to its ability to 

capture a large receptive field while minimizing parameters, making it generalizable.
● Performance increase over the iterations.
● As the size of the kernel increases, the lower ranks perform better earlier and earlier in 

training compared to the baseline.
● With a kernel size of 3, the gap early in training is quite large, but with a kernel size of 7, 

ranks 5 and 6 outperform the baseline.

Performance Learnings
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Discussion & 
Conclusion



● Primary goal: identify the tradeoff between 
the computational efficiency, time, and 
performance of the model when using our 
newly proposed low-rank convolutions.

● Overall success as we proposed a new 
form of training, keeping the entire set of 
weights entirely in the rank-N space.

● Maintained accuracies, even with very low 
rank spaces, indicating that convolutions 
can be made more efficient in parameter 
count.

Final Thoughts & Discussion
Explicitly, we effectively cut our 
convolutional trainable parameters from 
O(N^2) to O(N) and in the process saw 
positives in the realm of:

1. Testing time (approx. equal to default 
Pytorch)

2. Speed to reach accuracy
3. Testing accuracy
4. Model generalizability
5. Relative training time



1. Optimizing the training and testing process to surpass PyTorch results.
2. Test this approach with larger CNNs or other models.

Future Work


