
Efficient Low-Rank
Convolutional Neural

Networks
Sri Jaladi, Ishan Khare, Bar Weiner

01 Problem statement

02 Background

03 Hypothesis

04 Methodology & Experiments

05 Results & Analysis

06 Discussion & Conclusion

Table of contents

01
Problem statement:

How does utilizing low-rank convolutions affect a CNN’s
performance in computational time, memory, and accuracy?

02
Background

Deep learning compute requirements are growing faster than
hardware growth creating bottlenecks in computational efficiency.

Motivation

● Slide a size K x K trained kernel across our

input image

● Process of repeatedly sliding is highly

time-inefficient

● We show optimizations: instead of using a

full K x K convolution, for large K, we use a

low rank representation.

Convolutions

● Low-Rank approximation (LoRA) for
rank-reduction of matrix M.

● LoRA (used by OpenAI + others for LLMs)
○ 1) train full model,
○ 2) approximate, and
○ 3) fine-tune.

● We propose an alternative to LoRA, where we:
○ 1) enforce rank-n matrices during training
○ 2) inference with efficient weights

Existing Approaches

03
Hypothesis:

Constraining convolution training to a rank-N
space, leads to: well-trained, well-performant
models with parameter and time efficiency.

04
Methodology &

Experiments

● Run a classification task on the
CIFAR-10 Dataset -> Split into Train,
Test and experiment.

For each experiment we do the following:
1. Batch learning (64)
2. Train for 10k iterations
3. Test on the entire test set
4. Log important information
5. Repeat 50 different seeds each time

CIFAR -10 Dataset

Experimental Setup

In total we ran experiments with the
following architectures:

1. Baseline (default architecture)
2. Using dropout (in between each

convolutional block)
3. Using Batch Norm (in between each

convolutional layer)
4. Using Both dropout and batch norm

For each experiment, we conducted
experiments using kernel sizes of 3,5,7.

For each kernel size, we tested all rank-N
training spaces up till the size

Conv Layer
ReLU

Conv Layer
ReLU

Max Pool: 50%

Conv Block

ConvBlock

ConvBlock

ConvBlock

Linear Layer

Output

Linear Layer

Double
Channels

Double
Channels

FlattenSoftmax

Experiments Conducted

Model Architecture

ReLU

● We create our own custom Low-Rank
Convolutional Layer which forces its
weights onto a Rank-N space.

● We manually deal with proper
initialization, maintenance, and Toeplitz
Multiplication of the Rank-N space
throughout training, but utilize PyTorch’s
auto-gradients.

● We then build on this by developing our
own Convolutional Block so that each
layer is a Rank-N enforced Low-Rank
Convolutional Layer

Low Rank Convolutional Layer

Toeplitz Matrix - allows for efficient,
parallelizable matrix multiplications

05
Results & Analysis

Timing Results

Increasing kernel size,
increases training time.

However, baseline
convolutions (x = 1.0)
outperform Rank-1.

Kernel Size has minimal to no
impact on testing time.

Toeplitz method is promising.

Some Ranks reach better
performance more quickly
than the baseline (Rank 7)

● Were able to effectively cut the space of CNN
weights down from O(N^2) to O(N)

● However, time often varied due to other model
components

● Time for testing was rather random in which
performed better due to convolutions not
being the bottleneck factor.

● Due to linear layers and activations, the
convolution wasn’t necessarily the bottleneck.

● General positive correlation between rank and
time for training

● Our training implementation is comparable to
PyTorch and thus promising for future work.

● Our rank-1 training (naively implemented)
rivaled that of PyTorch’s optimized CNN

● Component of interest: sometimes smaller
ranks achieve better performance more
quickly; analyzed further later

Time and Space

Train and Test Accuracy vs Rank/KS

● Increasing Kernel Size generally increases accuracy.
● Rank-1 is only 2% off PyTorch default convolutions: a promising tradeoff.
● Generalizability is slightly better: the difference between train and test

performance is better when using Low-Rank Convolutions
● Rank–6 outperforms PyTorch default convolution at Kernel Size 7

Loss vs Kernel Size

● As kernel size increases, lower rank matrices obtain performance quicker in
comparison to PyTorch default Convolution. E.g. in Kernel Size 7, Rank 6 trains
more efficiently than baseline.

Findings:
● Performance gaps even to Rank-1 are fairly small (only 2% in large kernels).
● Small ranks can have advantages during training, especially when dealing with larger

kernels and thus larger models.
● The smaller rank with a larger kernel size seems to be effective due to its ability to

capture a large receptive field while minimizing parameters, making it generalizable.
● Performance increase over the iterations.
● As the size of the kernel increases, the lower ranks perform better earlier and earlier in

training compared to the baseline.
● With a kernel size of 3, the gap early in training is quite large, but with a kernel size of 7,

ranks 5 and 6 outperform the baseline.

Performance Learnings

06
Discussion &
Conclusion

● Primary goal: identify the tradeoff between
the computational efficiency, time, and
performance of the model when using our
newly proposed low-rank convolutions.

● Overall success as we proposed a new
form of training, keeping the entire set of
weights entirely in the rank-N space.

● Maintained accuracies, even with very low
rank spaces, indicating that convolutions
can be made more efficient in parameter
count.

Final Thoughts & Discussion
Explicitly, we effectively cut our
convolutional trainable parameters from
O(N^2) to O(N) and in the process saw
positives in the realm of:

1. Testing time (approx. equal to default
Pytorch)

2. Speed to reach accuracy
3. Testing accuracy
4. Model generalizability
5. Relative training time

1. Optimizing the training and testing process to surpass PyTorch results.
2. Test this approach with larger CNNs or other models.

Future Work

