
Low-Rank Computationally Efficient Convolutional Neural Networks
Code: https://github.com/srijaladi/CS131Project/tree/main

Sri Jaladi
Stanford Computer Science

sjaladi@stanford.edu

Ishan Khare
Stanford Computer Science

iskhare@stanford.edu

Bar Wiener
Stanford Computer Science

barw@stanford.edu

1. Introduction
The bottleneck of computational efficiency has made it-

self prevalent with the expanding adoption of AI in daily life.
Whether this is with OpenAI spending millions of dollars each
day to run ChatGPT or Meta buying close to a million GPUs,
it is clear that computational efficiency is a high priority. To
combat these issues, some work has been done towards cre-
ating more efficient models. We plan on similarly experiment-
ing, but with convolutional neural networks (CNNs) and specif-
ically the convolutional layers within these models. Given the
high impact that CNNs have on the field of computer vision
(CV), we believe our work is a strong step in making CV more
efficient. Specifically, we plan on training CNNs while forc-
ing their convolutional weight matrices to be low-rank, where
rank refers to the rank of the weight matrix. We hypothesize
this process should allow for the model, during test-time, to
reduce computations (increasing speed), but may cause loss
of some performance due to restricting the model’s possible
weight space. Our project will explore this tradeoff. Our prob-
lem statement is: “How does utilizing low-rank convolutions
affect a CNN’s performance in computational time, mem-
ory, and accuracy?”. We hope our work can help bring often
hefty CV models and CNNs to daily-usable devices such as
phones and computers.
2. Related Work

We note that a large portion of our project relies on heavy
mathematical results and proofs. We note that these have each
individually been done in literature and we are combining their
results in order to generate our novel idea of low-rank con-
volutions. Due to limited space, we cannot fully prove out
all these components, but we will appropriately cite papers
which do these computations. First, we note that previous work
has proven that a convolution C ∈ Rnxn applied onto a ma-
trix X can actually be expressed entirely as a series of matrix
multiplications M1,aM2,a...Mn,aXMT

n,bM(n−1),b...M
T
2,bM

T
1,b

where each Mi,a,Mi,b : ∀i ∈ {1, 2, 3...n} are Toeplitz matri-
ces [3]. Combining the terms Mi,a : ∀i ∈ {1, 2, 3, ...n} and the
terms Mi,b : ∀i ∈ {1, 2, 3, ...n} yields just MaXMb, which is
how our code does this process. A more explicit and detailed
proof for the creation of each Toeplitz Matrix and multiplica-
tion process (along with corresponding code) can be found in
another paper [6]. There has also been significant research in
utilizing low-rank approximations (LoRA) to reduce parame-
ters in neural networks. While most LoRA papers focus on
LLMs and linear layers, one paper utilized a special rank-based
algorithm to try and measure the importance of each parame-
ter in a CNN model and then prune low-importance parameters
[7]. Unfortunately, almost all the existing research in LoRA
first trains the model regularly, then approximates the weight

matrices, and then potentially does fine-tuning after [5] [4] [9].
While this has yielded promising results, this does not account
for constraining the weight matrices to low-rank throughout the
entirety of training. We believe that this will yield even better
performance and accuracy. The concern with this approach, ac-
cording to research, is that it may be more time-inefficient [5].
However, we hypothesize that the usage of matrix multiplica-
tions for CNNs will help reduce this issue. Further, we be-
lieve that maintaining (and potentially improving) testing time
while reducing parameter counts and maintaining accuracy will
be well worth this cost. However, we do test and emphasize
the training time due to this concern. There is also a gap in
low-rank training research in exploring applications within the
realm of CNNs, which are a massive part of the computer vi-
sion space, and which is why we chose to explore this area.

3. General Methodology
Our idea comprises of two components. Firstly, we use the

fact that convolutions on a matrix can instead be expressed as
as a series of matrix multiplications. Next, we use the fact that
the lower the rank of the convolution weight matrix, the lower
the number of matrices there are in such a series. Therefore,
reducing the rank of the convolution weight matrix reduces the
number of computations that must be done. Thus, we trained
CNN image classifiers on the CIFAR-10 dataset [1] while ap-
plying each of the model’s convolutions via a series of matrix
multiplications. This way, we can ensure that the rank of the
convolution rank matrix is maintained throughout the entirety
of training. We experiment with modifying the rank of the con-
volution weight matrices and viewing its impact on the num-
ber of calculations, time taken for model computations, and the
performance or degradation of the model. Note that this guar-
antees higher space efficiency of order K where the kernel used
during convolutions is of size K x K. Explicitly, convolutions
would regularly utilize space O(K2), but under our scheme,
they only utilize space of order O(LK) where L is the rank to
which we constrain our weight matrices to. When L << K, it
becomes relatively negligible, and so we can effectively cut an
order of K off the number of parameters we store.

4. Algorithmic Methodology
We now describe our algorithm to create a low-rank

convolutional layer enforced onto a rank-N space. In order
to do this, we create our own custom PyTorch module for
a RankConv2d layer, which takes as input all the PyTorch
Convolutional Layer inputs along with the desired rank of the
convolution. During initialization of this layer, we need to
ensure that the initialization of our low-rank convolution is
approximately equal to the initialization process that PyTorch
default convolution uses. To replicate the Xavier Initialization

1

https://github.com/srijaladi/CS131Project/tree/main


used by PyTorch default convolution, we follow a 3 step
process. First, we initialize a K x K matrix M , and initialize
its values with Xavier Initialization. We then utilize the
Eckert-Young Rank Approximation algorithm to approximate
M to our layer’s desired rank of L. To apply the Eckert-Young
Algorithm, we run Singular Value Decomosition (SVD) on M
to obtain M = UΣV T [2]. We then obtain
Ma =

[√
Σ1,1colU (1)

√
Σ2,2colU (2) ...

√
ΣL,LcolU (L)

]
MT

b =
[√

Σ1,1colV (1)
√
Σ2,2colV (2) ...

√
ΣL,LcolV (L)

]
where colA(i) represents the ith column in matrix A. This
way, Ma,M

T
b ∈ RK x L and M = MaMb, ensuring that

the convolution matrix M is rank L. Importantly, we
take the square root of each value in Σ and apply it to
each Ma and Mb equally so that the magnitudes of each
of these matrices are equal. Note that this initialization
scheme is vital to our project as we discovered that without
this, the magnitudes always lead to either exploding or
vanishing gradient problems. Once we have Ma,Mb, we
create the Toeplitz matrices outlined in the related work of
{Mi,a : ∀i ∈ {1, 2, 3...L}}, {Mi,b : ∀i ∈ {1, 2, 3...L}}.
Note that Mi,a represents the Toeplitz Matrix created by
utilizing the ith column of matrix Ma. A visualization of a
Toeplitz matrix from some vector x can be seen in Figure
1. We then apply the convolution onto our image X by

Figure 1. Toeplitz Matrix

computing M1,aM2,a...ML,aXMT
L,b...M

T
2,bM

T
1,b. Note that

during training, we must compute this manually, but during
testing, we freeze our weights, so we can just precompute
MT,a = M1,aM2,a...ML,a and MT

T,b = MT
L,b...M

T
2,bM

T
1,b to

get the result of our convolution as MT,aXMT
T,b. Note that

the related work contains the full proof as to why this process
works. This describes the algorithm used to both initialize
our Low-Rank Convolution Layer and to apply our Low-Rank
Convolution onto an image X . During training, we simply
pass Ma, Mb as parameters into PyTorch’s optimizer and
utilize PyTorch’s in-built autogradients/backward.

5. Architecture Methodology
Now that we have described the algorithmic manner by

which our Low-Rank Convolutional Layer works, we now de-
scribe the architecture that we use throughout our experiments
and project. For our architecture, we create a mini version of
the Very Deep Convolutional Network by VGG [8]. This archi-
tecture stacks together a large number of convolutional blocks
and has shown to obtain very high performance.

Note that a convolutional block ConvBlock(C1, C2) consists
of following layers in the following manner:
1. Conv Layer ((In,Out) Channels: (C1, C2)) + ReLU

2. Conv Layer ((In,Out) Channels: (C2, C2)) + ReLU
3. Max Pooling 2D (Stride: 2, Window Size: (2, 2))

The idea is that each block will half the width and height
of each image. (due to the Max Pool layer). To compensate,
we double the channels during each convolution block, to have
the total features be halved when moving from one convolution
block to the next. For our experiments, we standardized each
convolutional layer in a block to have the same kernel size (de-
pendent on the experiment) and use “same” padding. For our
architecture, we simply stack these ConvBlocks together, end-
ing with linear layers:
1. ConvBlock(3, 32)
2. ConvBlock(32, 64)
3. ConvBlock(64, 128)
4. Flatten + Linear(2048 → 128) + ReLU
5. Linear(128 → 10) + Softmax

A visual rep. of the architecture can be seen in Figure 2.

Figure 2. Model Architecture

6. Experiments
We ran many experiments and collected a large amount of

data from each experiment during our project. We first state
that we ran four large scoped experiments. These were:
1. Baseline Architecture
2. BatchNorm Architecture (Insert a 2d BatchNorm layer after
each Convolutional Layer)
3. Dropout Architecture (Insert a p = 0.4 Dropout layer after
each Convolutional Block)
4. Both Architecture (Utilize BatchNorm and Dropout)

For each of these larger scoped experimenst, we ran exper-
iments using kernel sizes of K ∈ {3, 5, 7}. For each kernel
size K, we ran the experiment using rank L ∈ {1, 2, 3, ...K}.
Further, for each experiment with a architecture type, kernel
size K, and rank L, we reran the entire experiment 50 times
using 50 random seeds. This was to ensure that our average
times were as accurate as possible by collecting a sizable sam-
ple. Note that during each experiment we used a 5000/1000
train/test split for each of the 10 image classes, batch learning
with a batch size of 64, 10000 training iterations, cross entropy
loss, an Adam Optimizer, tested on the entire 10000 image test
set, and logged important information.

7. Results
When examining the results, we can first examine a com-

parison of results between the different types of architectures at
rank-1 and kernel size of 5 and 7. We first note that we initially
ran our experiments only with the Base model (without dropout
or BatchNorm), but noticed that the model was overfitting. In
order to combat this, we experimented with these techniques,

2



regularly utilized to combat overfitting, and in the process were
able to test how low-rank convolutions would work when addi-
tional layers were added to the model.

Figure 3. Table of Results for Architecture Types
We can generally observe that, firstly, BatchNorm seems to

be consistently more computationally expensive as each of the
architectures containing BatchNorm took longer during both
training and testing than their respective counterpart and at ap-
proximately the same rate longer. This begins to display that
the convolutional layer might not be the bottlenecking compo-
nent in the time it takes the model, but this is further exlpored
later. We can also observe that BatchNorm seems to create
the most generalizable models. At both kernel sizes of 5 and
7, models with BatchNorm had test accuracies much closer to
their respective training accuracies, indicating better general-
izability and less overfitting. Further, the architecture which
seemed to have the best generalizability and test loss was the
one using both Dropout and BatchNorm. We note that at kernel
sizes of both 5 and 7, this architecture had the best test loss and
nearly the best testing accuracy as well, despite having a train-
ing accuracy which was nearly 10% under the best. The drop in
training accuracy is acceptable because it simply displays that
the model has not reached its full potential yet, meaning that
this architecture is conducive to good performance. Through-
out the rest of this paper we examine the results from the archi-
tecture using both BatchNorm and Dropout.
7.1. Timing Results
Figures 4 and 5 depict the results that we had from low-rank
convolutions when evaluating the time taken to test and the time
taken to train the model. Note that at x = 1.0 (rightmost point
on the plots) the Rank

Kernel Size value is 1.0, meaning that our
kernel is full-rank and we actually just use PyTorch’s Default
Convolution. We use x = 0.0 (leftmost point on the plotos) to
represent rank-1 representations.

We can first observe that the time taken to test is essentially
identical throughout all ranks at the same kernel size K. The
differences are fractions of a second when testing 10000 im-
ages, which is negligible. This is relatively positive as it indi-
cates that our low-rank convolutions are actually equivalent to

Figure 4. Time to Test Figure 5. Time to Train

Figure 6. Test Accuracy Figure 7. Train Accuracy

PyTorch’s default convolution. However, we will also note that
because we can always just precompute our convolution matrix
and input the result into PyTorch’s convolution function, we
can always guarantee (in an actual setting) that using low-rank
convolutions can always achieve the same efficiency as Py-
Torch. However, despite our implementation not having all the
same under-the-hood optimizations as PyTorch, we obtain the
same efficiency, indicating that with more optimizations under-
the-hood, our low-rank convolutions can easily outperform Py-
Torch. However, we note that these results in combination with
our results from BatchNorm experiments lead to the conclu-
sion that the convolutional layer is not the time-bottleneck for
our model, and instead other layers like BatchNorm are.

We now analyze training time, which was a concern listed
in related works about our project idea. Firstly, we can ob-
serve that as the rank of the kernel increases, the time taken
to train increases as well. We notice a sharp increase when
moving from rank-1 to rank-2, which emphasizes the impor-
tance of rank-1 (highly parameter efficient) representations. In
fact, while PyTorch’s Default Convolution (at x = 1.0) barely
trains faster than our Rank-1 model, our Rank-1 model remains
highly competitive in total train time. This is a highly impor-
tant result as it shows that we are able to mitigate the training
time concerns of constraining training to a low-rank space for
all of training.

7.2. Performance Results

We can examine Figures 6 and 7 to identify our low-rank
convolutions’ performance on the testing set and training set
(after training). Firstly, we observe that the accuracy during
both training and testing generally increases as the rank that
we use to represent the kernel increases. This is expected be-
cause with more parameters, we would expect greater perfor-
mance. However, we note that in testing accuracy, our Rank-1
model is actually only approximately 2% off in accuracy from
PyTorch’s Default Convolution, which is a relatively minor ac-
curacy dropoff. This is a very promising result as it displays
cutting down parameters from O(K2) to O(K) can almost en-
tirely maintain accuracy. Another important and positive result
is that the training accuracy increases more quickly (as rank in-
crease) when compared to testing accuracy. This indicates that
lower rank models are more generalizable and less prone to
overfitting as the difference between train and test performance
is minimized at lower ranks. Again, this also makes sense as
reducing parameter counts in models generally helps to reduce
overfitting as it forces the model to learn more generalizable

3



Figure 8. Loss Kernel Size 3 Figure 9. Loss Kernel Size 5

schemes. Another interesting result was that our Rank-6 model
for a kernel size of 7 actually outperformed PyTorch’s Default
kernel size 7 (full-rank). We explore this result in more detail.
7.3. Performance over Time Results

Figure 10. Loss Kernel Size 7

For this portion, we examine Figures 8, 9, and 10. More
specifically, we look at iteration 2000 in each of these figures to
evaluate how the performance of the model is early into train-
ing. This helps us evaluate how quickly the model can reach
good performance and how quickly it trains (NOT related to
time taken to train). We first observe that at 2000 iterations,
the difference in performance between rank 2 and rank 3 for
a kernel size of 3 is fairly large, the difference in performance
between rank 4 and rank 5 for a kernel size of 5 is smaller, and
rank 6 outperforms rank 7 for a kernel size of 7. The general
observable trend is that as the kernel size increases, low-rank
convolutions obtain performance comparatively more quickly
than PyTorch’s Default Convolutions. This is important for our
project as it displays that even though low-rank convolutions
may take more time for the same number of iterations, depend-
ing on the task, it is possible to simply train them for less it-
erations and achieve the same performance, thereby limiting
training time as well. This is a good depiction that our low-rank
convolutions are actually going to scale better than the default
convolution. With larger models and larger kernels, we would
then expect that our low-rank convolution to see less drawbacks
in terms of train time and time needed to obtain good perfor-
mance due to this improved scaling.

8. Conclusion
Overall, our project was a success. We firstly displayed how

we could cut use low-rank matrices to reduce memory in a
guaranteed fashion, cut the number of parameters used by con-
volutions in CNNs from O(K2) to O(K), and how we could
constrain weights to these low-rank spaces throughout the en-
tirety of training. We then discovered that, even with an unopti-

mized under-the–hood implementation, our low-rank convolu-
tions were essentially identical to PyTorch’s Default Convolu-
tions in testing efficiency (time taken to evaluate on testing set).
Unfortunately, our low-rank convolution, even at Rank-1, was
a bit more inefficient during train time when compared to Py-
Torch’s default convolution. However, there are 3 main caveats
to this result. Firstly, we displayed in section 7.3 that low-rank
convolutions scale better, meaning that they often achieve bet-
ter performance quicker, minimizing the number of iterations
needed. This could enable reducing the number of training it-
erations, thereby potentially reducing the impact of this longer
training time. Secondly, we observed that other layers in the
model (such as BatchNorm) often had a much larger impact on
time taken than the convolutional layers, meaning that convo-
lutions alone are not the bottleneck for timing. Finally, we note
that, in practice, testing time is often significantly more im-
portant than training time, meaning that this tradeoff is likely
worth it, especially considering the memory improvements our
approach guarantees.

In addition to the time taken, we showed that the accuracy
dropoff when using low-rank and even rank-1 convolutions was
actually relatively negligible. With only a 2% dropoff in testing
between a rank-1 convolution and PyTorch’s convolution, we
conclude that limiting the number of parameters can be done in
this form without have a large impact on model performance.
Further, we show that the low-rank convolutions are actually
more generalizable and less prone to overfitting, making them
highly usable in settings with limited data (likely to overfit).
Finally, we also display that low-rank convolutions do not need
to be standalone as performance of the models was actually im-
proved when these low-rank convolutions were combined with
other layers such as BatchNorm and Dropout, and these actu-
ally helped increase generalizability even further. Overall, our
project displays a time-efficient method to reduce the memory
from order O(K2) to O(K) while maintaining accuracy and
increasing generalizability.

When examining future work, there are 2 components we
believe should be directly worked on. Firstly, a more optimized
under-the-hood implementation for low-rank convolutions and
multiplications should be applied so that train time can be even
faster, potentially rivaling PyTorch, and test time can be faster
as well, potentially beating PyTorch. In addition, another area
of future work would be to explore the same low-rank weight
constraint throughout the entirety of training to larger CNNs
and other large models to see how efficiency gains might be
achieved there.

9. Individual Contributions
Each member of the team contributed equally to the project.

We worked through the code together and were always together
when we completed the code. We ran all the experiments at
once on a PC with a GPU. We also equally worked on the paper
and presentation together while in the same room.

4



References
[1] Cifar-10 and cifar-100 datasets. 1
[2] Carl Eckart and Gale Young. The approximation of one matrix by

another of lower rank. Psychometrika, 1(3):211–218, Sep 1936.
2

[3] Robert M Gray et al. Toeplitz and circulant matrices: A review.
Foundations and Trends® in Communications and Information
Theory, 2(3):155–239, 2006. 1

[4] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low
rank adaptation of large models, 2024. 1

[5] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora:
Low-rank adaptation of large language models, 2021. 1

[6] Sri Jaladi. Using rank-n approximation and matrix multiplication
to speed up convolutions in convolutional neural networks (cnns),
Dec 2022. 1

[7] Ziran Qin, Mingbao Lin, and Weiyao Lin. Low-rank winograd
transformation for 3d convolutional neural networks. 2023. 1

[8] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition, 2015. 2

[9] Yang Yang, Wen Wang, Liang Peng, Chaotian Song, Yao Chen,
Hengjia Li, Xiaolong Yang, Qinglin Lu, Deng Cai, Boxi Wu,
and Wei Liu. Lora-composer: Leveraging low-rank adaptation
for multi-concept customization in training-free diffusion models,
2024. 1

5


	. Introduction
	. Related Work
	. General Methodology
	. Algorithmic Methodology
	. Architecture Methodology
	. Experiments
	. Results
	. Timing Results
	. Performance Results
	. Performance over Time Results

	. Conclusion
	. Individual Contributions

